首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5231篇
  免费   323篇
  国内免费   1篇
  2022年   54篇
  2021年   143篇
  2020年   66篇
  2019年   97篇
  2018年   101篇
  2017年   98篇
  2016年   158篇
  2015年   212篇
  2014年   295篇
  2013年   343篇
  2012年   386篇
  2011年   360篇
  2010年   311篇
  2009年   225篇
  2008年   238篇
  2007年   259篇
  2006年   219篇
  2005年   224篇
  2004年   149篇
  2003年   154篇
  2002年   153篇
  2001年   90篇
  2000年   88篇
  1999年   61篇
  1998年   40篇
  1997年   31篇
  1996年   24篇
  1995年   26篇
  1993年   28篇
  1992年   41篇
  1991年   39篇
  1990年   40篇
  1989年   36篇
  1988年   40篇
  1987年   43篇
  1986年   54篇
  1985年   49篇
  1984年   39篇
  1983年   29篇
  1982年   29篇
  1981年   32篇
  1980年   27篇
  1979年   40篇
  1978年   29篇
  1977年   26篇
  1976年   27篇
  1975年   28篇
  1973年   32篇
  1972年   36篇
  1971年   30篇
排序方式: 共有5555条查询结果,搜索用时 15 毫秒
131.
132.
133.
The objectives were to investigate the plasma lipid peroxidation and erythrocyte antioxidants status in workers exposed to nickel. The study groups comprised 69 nickel plating workers and 50 office workers residing in the same city, but away from the place of work of the study group subjects, considered as control group. Urinary nickel concentration was determined by graphite furnace atomic absorption spectrophotometry. The plasma lipid peroxidation and erythrocyte antioxidants were measured by spectrophotmetric methods. The plasma lipid peroxidation level was significantly increased in nickel-platers and their helpers as compared with controls. Erythrocyte antioxidants were significantly decreased in the nickel-platers compared with the controls. The level of plasma lipid peroxidation was positively and erythrocyte antioxidants were negatively and significantly correlated with the urine nickel levels. Multiple regression analysis assessed the oxidative stress associated with nickel and other potential confounding factors such as body mass index, the consumption of green vegetables, coffee, tea, smoking and alcohol consumption. Analysis showed that the lifestyle confounding factors: the consumption of green vegetables, smoking and alcohol, were not significantly associated with oxidative stress. The exposure to nickel, body mass index and coffee consumption were significantly associated with oxidative stress. The results show that the increased plasma lipid peroxidation and decreased erythrocyte antioxidants levels observed in nickel-exposed workers could be used as biomarkers of oxidative stress.  相似文献   
134.
Nutrient dynamics in storage organs is a complex developmental process that requires coordinated interactions of environmental, biochemical, and genetic factors. Although sink organ developmental events have been identified, understanding of translational and post‐translational regulation of reserve synthesis, accumulation, and utilization in legumes is limited. To understand nutrient dynamics during embryonic and cotyledonary photoheterotrophic transition to mature and germinating autotrophic seeds, an integrated proteomics and phosphoproteomics study in six sequential seed developmental stages in chickpea is performed. MS/MS analyses identify 109 unique nutrient‐associated proteins (NAPs) involved in metabolism, storage and biogenesis, and protein turnover. Differences and similarities in 60 nutrient‐associated phosphoproteins (NAPPs) containing 93 phosphosites are compared with NAPs. Data reveal accumulation of carbon–nitrogen metabolic and photosynthetic proteoforms during seed filling. Furthermore, enrichment of storage proteoforms and protease inhibitors is associated with cell expansion and seed maturation. Finally, combined proteoforms network analysis identifies three significant modules, centered around malate dehydrogenase, HSP70, triose phosphate isomerase, and vicilin. Novel clues suggest that ubiquitin–proteasome pathway regulates nutrient reallocation. Second, increased abundance of NAPs/NAPPs related to oxidative and serine/threonine signaling indicates direct interface between redox sensing and signaling during seed development. Taken together, nutrient signals act as metabolic and differentiation determinant governing storage organ reprogramming.  相似文献   
135.
136.
Secreted small cysteine-rich proteins (SCPs) play a critical role in modulating host immunity in plant–pathogen interactions. Bioinformatic analyses showed that the fungal pathogen Verticillium dahliae encodes more than 100 VdSCPs, but their roles in host–pathogen interactions have not been fully characterized. Transient expression of 123 VdSCP-encoding genes in Nicotiana benthamiana identified three candidate genes involved in host–pathogen interactions. The expression of these three proteins, VdSCP27, VdSCP113, and VdSCP126, in N. benthamiana resulted in cell death accompanied by a reactive oxygen species burst, callose deposition, and induction of defence genes. The three VdSCPs mainly localized to the periphery of the cell. BAK1 and SOBIR1 (associated with receptor-like protein) were required for the immunity triggered by these three VdSCPs in N. benthamiana. Site-directed mutagenesis showed that cysteine residues that form disulphide bonds are essential for the functioning of VdSCP126, but not VdSCP27 and VdSCP113. VdSCP27, VdSCP113, and VdSCP126 individually are not essential for V. dahliae infection of N. benthamiana and Gossypium hirsutum, although there was a significant reduction of virulence on N. benthamiana and G. hirsutum when inoculated with the VdSCP27/VdSCP126 double deletion strain. These results illustrate that the SCPs play a critical role in the V. dahliae–plant interaction via an intrinsic virulence function and suppress immunity following infection.  相似文献   
137.
138.
139.
This study assessed the responses of vitamin-D3 intraperitoneally injected to Rohu, Labeo rohita @ of 0 IU/kg bw (only solvent), 100 IU/kg bw and 500 IU/kg bw reared in 20 and 40 ppm of calcium (Ca) enriched water. The cellular changes in Corpuscles of Stannius (CS) gland, serum Ca, and inorganic phosphate (Pi) level were analysed up to the 60th day. Rohu administered with 100 IU/kg bw D3 and exposed to 40 ppm Ca-rich water exhibited notable hyperplasia of CS compared with their control groups. Notable changes with high serum Ca level (13.87 ± 0.3 mg/dl) was detected on the 5th day in fish exposed to 40 ppm Ca-rich water, while related values attained (13.74 ± 0.1 mg/dl) only after 7 days in 20 ppm Ca-rich water of 500 IU/kg bw vitamin D3 injection. Similarly, high serum Pi level (7.66 ± 0.2 mg/dl) in 40 ppm Ca injected with D3 at 500 IU/kg bw. The results demonstrated that the Ca homeostasis of Labeo rohita is influenced by intra-peritoneal vitamin D3. Progressive studies should be conducted by increasing the dose of vitamin D3 to investigate optimum dose/supplement in feed for commercially important aquaculture teleost Labeo rohita for maximum and sustainable absorption of Ca from the variable water Calcium levels to maintain Ca2+ homeostasis.  相似文献   
140.
Pathogen‐/microbe‐associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan‐triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho‐histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan‐treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan‐triggered immune‐responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor‐like kinases, and 65 chitosan‐triggered immune‐responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune‐related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan‐responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号