首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   10篇
  87篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   8篇
  2008年   4篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
71.
The administration of the two dopamine receptor agonists apomorphine (APM) and piribedil (PBD) to rats leads to an increase in ornithine decarboxylase (ODC) activity in the adrenal medulla. In this work, we have tried to elucidate the neural pathways involved in the regulation of this enzyme. The treatments used are: unilateral splanchnicotomy, spinal cord section, intraventricular injection of the neurotoxin 6-hydroxydopamine and section of the brain at various levels. Unilateral splanchnicotomy reduces very significantly the induction of ODC produced by either APM or PBD. Spinal cord section at either of two different levels (T5 or T2) also lowers the response to APM. Intracerebroventricular injection of 6-hydroxydopamine, on the other hand, elevates the mean response to APM, although not to a statistically significant extent. Section of the mesencephalon well below the periaqueductal gray does not alter the response of adrenomedullary ODC to APM. Transection of the diencephalon almost prevents it whereas hypothalamic deafferentation and incomplete diencephalic transection potentiate the effect of this drug. These observations strongly suggest that adrenomedullary ODC activity is predominantly regulated by a central system, originating mainly in the diencephalon-telencephalon and including a facilitatory dopaminergic component.  相似文献   
72.
Ion channel mapping techniques are described and the results for two fungal organisms, Saprolegnia ferax and Neurospora crassa, are presented. In these species, two channel types have been characterized, stretch-activated channels exhibiting significant calcium permeability and spontaneous channels having significant potassium permeability. Two distinct analyses of patch clamp data, analysis of channel self-clustering and association between different channel types, and localization along the hyphae, reveal significant differences between the two organisms. S. ferax maintains a tip-high gradient of both channel types which is lost after disruption of the actin cytoskeleton. There is significant self-clustering of the channels, as well as interactions between channel types. N. crassa on the other hand does not maintain tip-high gradients, and clustered distributions are observed only for the stretch-activated channels. In terms of physiological roles, evidence is quite strong that the stretch-activated channels function as a growth sensor in S. ferax, but have an unknown function in N. crassa. In both organisms, the potassium permeable channels presumably function in potassium uptake. The differences between these two organisms may be due, in part, to differences in their normal environment: aquatic versus terrestrial. Copyright 1998 Academic Press.  相似文献   
73.
Expression of the small-subunit p49 mRNA of primase, the enzyme that synthesizes oligoribonucleotides for initiation of DNA replication, was examined in mouse cells stimulated to proliferate by serum and in growing cells. The level of p49 mRNA increased approximately 10-fold after serum stimulation and preceded synthesis of DNA and histone H3 mRNA by several hours. Expression of p49 mRNA was not sensitive to inhibition by low concentrations of cycloheximide, which suggested that the increase in mRNA occurred before the restriction point control for cell cycle progression described for mammalian cells and was not under its control. p49 mRNA levels were not coupled to DNA synthesis, as observed for the replication-dependent histone genes, since hydroxyurea or aphidicolin had no effect on p49 mRNA levels when added before or during S phase. These inhibitors did have an effect, however, on the stability of p49 mRNA and increased the half-life from 3.5 h to about 20 h, which suggested an interdependence of p49 mRNA degradation and DNA synthesis. When growing cells were examined after separation by centrifugal elutriation, little difference was detected for p49 mRNA levels in different phases of the cell cycle. This was also observed when elutriated G1 cells were allowed to continue growth and then were blocked in M phase with colcemid. Only a small decrease in p49 mRNA occurred, whereas H3 mRNA rapidly decreased, when cells entered G2/M. These results indicate that the level of primase p49 mRNA is not cell cycle regulated but is present constitutively in proliferating cells.  相似文献   
74.
75.
This study evaluated 3 zoos in the Philippines: the Wildlife Rescue Center and Mini Zoo, Manila Zoological and Botanical Garden, and Cavite Botanical and Zoological Park to determine the standards of nonhuman animal welfare. The study measured and compared the cage sizes of various animals to the international minimum standards. According to the categories of management and husbandry, the 3 zoos showed a significant difference on the mean scores of ranking. The Wildlife Rescue Center and Mini Zoo ranked first, followed by Manila Zoo and Cavite Zoo. Although most cages in the 3 zoos followed acceptable minimum standards, the study identified several problems related to animal welfare, hygiene, husbandry, and management. Based on the evaluations, the study recommended that the 3 zoos improve animal welfare standards.  相似文献   
76.
Quaking viable (qk(v)) mice fail to properly compact myelin in their central nervous systems. Although the defect in the qk(v) mice involves a mutation affecting the expression of the alternatively spliced qk gene products, their roles in myelination are unknown. We show that the QKI RNA binding proteins regulate the nuclear export of MBP mRNAs. Disruption of the QKI nucleocytoplasmic equilibrium in oligodendrocytes results in nuclear and perikaryal retention of the MBP mRNAs and lack of export to cytoplasmic processes, as it occurs in qk(v) mice. MBP mRNA export defect leads to a reduction in the MBP levels and their improper cellular targeting to the periphery. Our findings suggest that QKI participates in myelination by regulating the mRNA export of key protein components.  相似文献   
77.
78.
Insulin-like growth factor I (IGF-I) has been previously shown to promote survival of oligodendrocyte progenitors; however, the underlying mechanisms are not fully understood. Our aim was to investigate the involvement of phosphatidylinositol 3-kinase (PI3K), MEK1, and Src family tyrosine kinases in IGF-I-mediated oligodendrocyte progenitor survival. In agreement with previous studies, IGF-I promoted cell survival. We show that IGF-I prevented apoptosis induced by growth factor deprivation in a PI3K-dependent and MEK/ERK-independent manner. In addition, IGF-I activated Akt while inhibiting caspase-3 activation, and these effects were reversed by the PI3K inhibitors LY 294002 and wortmannin, but not by the MEK1 inhibitor PD 98059. Interestingly, PP2, a specific Src-like kinase inhibitor, blocked the tyrosine phosphorylation of Src, Fyn, and Lyn and IGF-I-stimulated Akt activation, yet had no significant effects on caspase-3 activation or progenitor survival. To further determine whether Akt is required for IGF-I-mediated survival, oligodendrocyte progenitors were transduced with defective Akt mutants or treated with an Akt inhibitor. Although the Akt mutants and inhibitor decreased Akt activity and reduced basal cell survival, IGF-I could partially rescue oligodendrocyte progenitors by decreasing caspase-3 activation. These results suggest that 1) PI3K is essential for IGF-I-promoted cell survival, 2) downstream activation of Akt-dependent and -independent pathways is involved, and 3) Src-like tyrosine kinases participate in IGF-I-induced Akt activation. Therefore, an unidentified effector(s) of PI3K appears to be involved in conferring complete IGF-I-mediated protection of oligodendrocyte progenitors.  相似文献   
79.
The microbiomes of phloem‐feeding insects include functional bacteria and yeasts essential for herbivore survival and development. Changes in microbiome composition are implicated in virulence adaptation by herbivores to host plant species or host populations (including crop varieties). We examined patterns in adaptation by the green leafhopper, Nephotettix virescens, to near‐isogenic rice lines (NILs) with one or two resistance genes and the recurrent parent T65, without resistance genes. Only the line with two resistance genes was effective in reducing leafhopper fitness. After 20 generations on the resistant line, selected leafhoppers attained similar survival, weight gain, and egg laying to leafhoppers that were continually reared on the susceptible recurrent parent, indicating that they had adapted to the resistant host. By sequencing the 16s rRNA gene, we described the microbiome of leafhoppers from colonies associated with five collection sites, and continually reared or switched between NILs. The microbiomes included 69–119 OTUs of which 44 occurred in ≥90% of samples. Of these, 14 OTUs were assigned to the obligate symbiont Candidatus sulcia clade. After 20 generations of selection, collection site had a greater effect than host plant on microbiome composition. Six bacteria genera, including C. sulcia, were associated with leafhopper virulence. However, there was significant within‐treatment, site‐related variability in the prevalence of these taxa such that the mechanisms underlying their association with virulence remain to be determined. Our results imply that these taxa are associated with leafhopper nutrition. Ours is the first study to describe microbiome diversity and composition in rice leafhoppers. We discuss our results in light of the multiple functions of herbivore microbiomes during virulence adaptation in insect herbivores.  相似文献   
80.
Sulphate uptake and its distribution within plants depend on the activity of different sulphate transporters (SULTR). In long‐living deciduous plants such as trees, seasonal changes of spatial patterns add another layer of complexity to the question of how the interplay of different transporters adjusts S distribution within the plant to environmental changes. Poplar is an excellent model to address this question because its S metabolism is already well characterized. In the present study, the importance of SULTRs for seasonal sulphate storage and mobilization was examined in the wood of poplar (Populus tremula × P. alba) by analysing their gene expression in relation to sulphate contents in wood and xylem sap. According to these results, possible functions of the respective SULTRs for seasonal sulphate storage and mobilization in the wood are suggested. Together, the present results complement the previously published model for seasonal sulphate circulation between leaves and bark and provide information for future mechanistic modelling of whole tree sulphate fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号