首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   10篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   8篇
  2008年   4篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
排序方式: 共有87条查询结果,搜索用时 250 毫秒
61.

Background

MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target.

Results

In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells.

Conclusion

The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function.  相似文献   
62.
The molecular mechanisms underlying H(2)O(2)-induced toxicity were characterized in rat oligodendrocyte cultures. While progenitor cells were more sensitive than mature oligodendrocytes to H(2)O(2), the antioxidant, N-acetyl-L-cysteine, blocked toxicity at both stages of development. Differentiated oligodendrocytes contained more glutathione than did progenitors and were less susceptible to decreases in glutathione concentration induced by H(2)O(2) stress. As free radicals have been considered to serve as second messengers, we examined the effect of H(2)O(2) on activation of the mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) 1/2 and p38. H(2)O(2) caused a time- and concentration-dependent increase in MAPK phosphorylation, an effect that was totally blocked by N-acetyl-L-cysteine. Further exploration of potential mechanisms involved in oligodendrocyte cell death showed that H(2)O(2) treatment caused DNA condensation and fragmentation at both stages of development, whereas caspase 3 activation and poly (ADP-ribose) polymerase cleavage were significantly increased only in oligodendrocyte progenitors. The pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone, blocked DNA fragmentation in progenitors and produced a small but significant level of protection from H(2)O(2) toxicity in progenitors and mature oligodendrocytes. In contrast, inhibitors of both p38 and MEK reduced H(2)O(2)-induced death most significantly in oligodendrocytes. The poly (ADP-ribose) polymerase inhibitor, PJ34, reduced H(2)O(2)-induced toxicity on its own but was most effective when combined with benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone or PD169316. The finding that molecular mechanisms conferring resistance to reactive oxygen species toxicity are regulated during oligodendrocyte differentiation may be of importance in designing therapies for certain neurological diseases affecting white matter.  相似文献   
63.
Primary cultures of oligodendrocytes were used to study the toxic effects of cadmium chloride. Cell viability was evaluated by the mitochondrial dehydrogenase activity and confirmed by propidium iodide (PI) fluorescence staining. The expression of the 72 kDa stress protein, HSP72, was assayed by Western blot analysis. The results showed that Cd(2+)-induced toxicity was dependent on the time and dose of exposure, as well as on the developmental stage of the cultures. Oligodendrocyte progenitors were more vulnerable to Cd(2+) toxicity than were mature oligodendrocytes. Mature oligodendrocytes accumulated relatively higher levels of Cd(2+) than did progenitors, as determined by (109)CdCl(2) uptake; treatment with the metal ion caused a more pronounced reduction in intracellular glutathione levels and significantly higher free radical accumulation in progenitors. The latter could explain the observed differences in Cd(2+) susceptibility. HSP72 protein expression was increased both in progenitors and in mature cells exposed to Cd(2+). Pretreatment with N-acetylcysteine, a thiocompound with antioxidant activity and a precursor of glutathione, prevented Cd(2+)-induced (i) reduction in glutathione levels and (ii) induction of HSP72 and diminished (i) Cd(2+) uptake and (ii) Cd(2+)-evoked cell death. In contrast, buthionine sulfoximine, an inhibitor of gamma-glutamyl-cysteine synthetase, depleted glutathione, and potentiated the toxic effect of Cd(2+). These results strongly suggest that Cd(2+)-induced cytotoxicity in oligodendrocytes is mediated by reactive oxygen species and is modulated by glutathione levels.  相似文献   
64.
The effect of nerve growth factor (NGF), a substance that promotes the differentiation and maintenance of certain neurons, was studied via scanning electron microscopy utilizing the PC12 clonal NGF-responsive pheochromocytoma cell line. After 2-4 d of exposure to NGF, these cells acquire many of the properties of normal sympathic neurons. However, by phase microscopy, no changes are discernible within the first 12-18 h. Since the primary NGF receptor appears to be a membrane receptor, it seemed likely that some of the initial responses to the factor may be surface related. PC12 cells maintained without NGF are round to ovoid and have numerous microvilli and small blebs. After the addition of NGF, there is a rapidly initiated sequential change in the cell surface. Ruffles appear over the dorsal surface of the cells with 1 min, become prominent by 3 min, and almost disappear by 7 min. Microvilli, conversely, disappear as the dorsal ruffles become prominent. Ruffles are seen at the the periphery of cell at 3 min, are prominent on most of the cells by 7 min and are gone by 15 min. The surface remains smooth from 15 min until 45 min when large blebs appear. The large blebs are present on most cells at 2 h and are gone by 4 h. The surface remains relatively smooth until 6-7 h of NGF treatment, when microvilli reappear as small knobs. These microvilli increase in both number and length to cover the cell surface by 10 h. These changes were not observed with other basic proteins, with α-bungarotoxin (which binds specifically to PC12 membranes), and were not affected by an RNA synthesis inhibitor that blocks initiation of neurite outgrowth. Changes in the cell surface architecture appear to be among the earlist NGF responses yet detected and may represent or reflect primary events in the mechanism of the factor’s action.  相似文献   
65.
We have transfected an immortalized optic nerve-derived cell line with the cDNA's encoding the two isoforms of MAG. Our aim was to assess whether expression of L-MAG (72 KDa) and S-MAG (67 KDa) in these cells confer adhesion properties when a suspension of single cells is allowed to aggregate. The selected cell lines expressed MAG mRNAs and proteins of the appropriate molecular size, and the proteins were targeted correctly to the plasma membrane. Both L-MAG and S-MAG-expressing transfectants exhibited enhanced self-adhesive properties, aggregating with faster kinetics and forming larger aggregates than MAG-negative control cells. The interaction appears to be mostly heterophilic since MAG+ and MAG- cells which were labeled with a fluorescent probe bound equally well to pre-aggregated MAG+ transfectants and their interaction was blocked by monoclonal anti-MAG antibodies. A further finding which supports the role of MAG in adhesion was the observation that MAG was preferentially localized at the junctions between cells, in confluent cultures.  相似文献   
66.

Background

The quaking viable (qkv) mouse has several developmental defects that result in rapid tremors in the hind limbs. The qkI gene expresses three major alternatively spliced mRNAs (5, 6 and 7 kb) that encode the QKI-5, QKI-6 and QKI-7 RNA binding proteins that differ in their C-terminal 30 amino acids. The QKI isoforms are known to regulate RNA metabolism within oligodendrocytes, however, little is known about their roles during cellular stress.

Methodology/Principal Findings

In this study, we report an interaction between the QKI-6 isoform and a component of the RNA induced silencing complex (RISC), argonaute 2 (Ago2). We show in glial cells that QKI-6 co-localizes with Ago2 and the myelin basic protein mRNA in cytoplasmic stress granules.

Conclusions

Our findings define the QKI isoforms as Ago2-interacting proteins. We also identify the QKI-6 isoform as a new component of stress granules in glial cells.  相似文献   
67.
68.
69.

Background

The genus Micronycteris is a diverse group of phyllostomid bats currently comprising 11 species, with diploid number (2n) ranging from 26 to 40 chromosomes. The karyotypic relationships within Micronycteris and between Micronycteris and other phyllostomids remain poorly understood. The karyotype of Micronycteris hirsuta is of particular interest: three different diploid numbers were reported for this species in South and Central Americas with 2n?=?26, 28 and 30 chromosomes. Although current evidence suggests some geographic differentiation among populations of M. hirsuta based on chromosomal, morphological, and nuclear and mitochondrial DNA markers, the recognition of new species or subspecies has been avoided due to the need for additional data, mainly chromosomal data.

Results

We describe two new cytotypes for Micronycteris hirsuta (MHI) (2n?=?26 and 25, NF?=?32), whose differences in diploid number are interpreted as the products of Robertsonian rearrangements. C-banding revealed a small amount of constitutive heterochromatin at the centromere and the NOR was located in the interstitial portion of the short arm of a second pair, confirmed by FISH. Telomeric probes hybridized to the centromeric regions and weakly to telomeric regions of most chromosomes. The G-banding analysis and chromosome painting with whole chromosome probes from Carollia brevicauda (CBR) and Phyllostomus hastatus (PHA) enabled the establishment of genome-wide homologies between MHI, CBR and PHA.

Conclusions

The karyotypes of Brazilian specimens of Micronycteris hirsuta described here are new to Micronycteris and reinforce that M. hirsuta does not represent a monotypic taxon. Our results corroborate the hypothesis of karyotypic megaevolution within Micronycteris, and strong evidence for this is that the entire chromosome complement of M. hirsuta was shown to be derivative with respect to species compared in this study.
  相似文献   
70.
Sulphate uptake and its distribution within plants depend on the activity of different sulphate transporters (SULTR). In long‐living deciduous plants such as trees, seasonal changes of spatial patterns add another layer of complexity to the question of how the interplay of different transporters adjusts S distribution within the plant to environmental changes. Poplar is an excellent model to address this question because its S metabolism is already well characterized. In the present study, the importance of SULTRs for seasonal sulphate storage and mobilization was examined in the wood of poplar (Populus tremula × P. alba) by analysing their gene expression in relation to sulphate contents in wood and xylem sap. According to these results, possible functions of the respective SULTRs for seasonal sulphate storage and mobilization in the wood are suggested. Together, the present results complement the previously published model for seasonal sulphate circulation between leaves and bark and provide information for future mechanistic modelling of whole tree sulphate fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号