首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   37篇
  749篇
  2023年   5篇
  2022年   12篇
  2021年   16篇
  2020年   11篇
  2019年   21篇
  2018年   18篇
  2017年   7篇
  2016年   24篇
  2015年   31篇
  2014年   37篇
  2013年   50篇
  2012年   55篇
  2011年   64篇
  2010年   49篇
  2009年   33篇
  2008年   32篇
  2007年   34篇
  2006年   39篇
  2005年   33篇
  2004年   30篇
  2003年   29篇
  2002年   19篇
  2001年   5篇
  2000年   2篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1989年   5篇
  1982年   3篇
  1981年   2篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   4篇
  1971年   3篇
  1970年   4篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1964年   2篇
  1963年   2篇
  1962年   2篇
  1942年   2篇
  1941年   1篇
  1915年   1篇
  1908年   1篇
  1889年   1篇
排序方式: 共有749条查询结果,搜索用时 0 毫秒
21.
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (RasGTP) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (RasGDP) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with RasGDP. Most of our designed mutations narrow the gap between the affinity of Raf for RasGTP and RasGDP, producing the desired shift in binding specificity towards RasGDP. A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards RasGDP. The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of RasGDP bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the RasGDP·Raf mutant complex is found in a conformation similar to that of RasGTP and not RasGDP. Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in RasGTP is likely to explain the natural low affinity of Raf and other Ras effectors to RasGDP. Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch.  相似文献   
22.
23.
In today’s scaled out systems, co-scheduling data analytics work with high priority user workloads is common as it utilizes better the vast hardware availability. User workloads are dominated by periodic patterns, with alternating periods of high and low utilization, creating promising conditions to schedule data analytics work during low activity periods. To this end, we show the effectiveness of machine learning models in accurately predicting user workload intensities, essentially by suggesting the most opportune time to co-schedule data analytics work. Yet, machine learning models cannot predict the effects of performance interference when co-scheduling is employed, as this constitutes a “new” observation. Specifically, in tiered storage systems, their hierarchical design makes performance interference even more complex, thus accurate performance prediction is more challenging. Here, we quantify the unknown performance effects of workload co-scheduling by enhancing machine learning models with queuing theory ones to develop a hybrid approach that can accurately predict performance and guide scheduling decisions in a tiered storage system. Using traces from commercial systems we illustrate that queuing theory and machine learning models can be used in synergy to surpass their respective weaknesses and deliver robust co-scheduling solutions that achieve high performance.  相似文献   
24.
25.
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca(2+) level on both sides of the channel. Cytosolic Ca(2+) enhanced RyR2 caffeine affinity, whereas luminal Ca(2+) essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC(50) of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca(2+) spark frequency ~75% and single RyR2 opening frequency ~150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca(2+) sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.  相似文献   
26.
27.
Arachidonoyl-serotonin inhibits in a mixed-type manner the metabolism of the endocannabinoid anandamide by the enzyme fatty acid amidohydrolase. In the present study, compounds related to arachidonoyl-serotonin have been synthesised and investigated for their ability to inhibit anandamide hydrolysis by this enzyme in rat brain homogenates. Removal of the 5-hydroxy from the serotonin head group of arachidonoyl-serotonin produced a compound (N-arachidonoyltryptamine) that was a 2.3-fold weaker inhibitor of anandamide hydrolysis, but which also produced its inhibition by a mixed-type manner (Ki(slope) 1.3 µM; Ki(intercept) 44 µM). Replacement of the amide linkage in this compound by an ester group further reduced the potency. In contrast, replacement of the arachidonoyl side chain by a linolenoyl side chain did not affect the observed potency. N-(Fur-3-ylmethyl) arachidonamide (UCM707), N-(fur-3-ylmethyl)linolenamide and N-(fur-3-ylmethyl)oleamide inhibited anandamide hydrolysis with pI50 values of 4.53, 5.36 and 5.25, respectively. The linolenamide derivative was also found to be a mixed-type inhibitor. It is concluded that the 5-hydroxy group of arachidonoyl-serotonin contributes to, but is not essential for, inhibitory potency at fatty acid amidohydrolase.  相似文献   
28.
Deep imaging within tissue (over 300 μm) at micrometer resolution has become possible with the advent of two-photon fluorescence microscopy (2PFM). The advantages of 2PFM have been used to interrogate endogenous and exogenous fluorophores in the skin. Herein, we employed the integrin (cell-adhesion proteins expressed by invading angiogenic blood vessels) targeting characteristics of a two-photon absorbing fluorescent probe to image new vasculature and fibroblasts up to ≈ 1600 μm within wound (neodermis)/granulation tissue in lesions made on the skin of mice. Reconstruction revealed three dimensional (3D) architecture of the vascular plexus forming at the regenerating wound tissue and the presence of a fibroblast bed surrounding the capillaries. Biologically crucial events, such as angiogenesis for wound healing, may be illustrated and analyzed in 3D on the whole organ level, providing novel tools for biomedical applications.  相似文献   
29.
The present study analyzes the effects of baclofen (BAC) on mice brain neurochemical alterations during the morphine (MOR) withdrawal syndrome. Male Swiss-Webster albino mice (27-33 g) were rendered dependent by intraperitoneal (i.p.) injection of MOR (2mg/kg), twice daily for 9 days. On day 10, the dependent animals were divided into two groups: one receiving naloxone (NAL; 6 mg/kg i.p.) to precipitate the withdrawal syndrome 60 min after the last dose of MOR and the other received BAC (2mg/kg, i.p.) followed by NAL (6 mg/kg, i.p.), injected 30 and 60 min after the last dose of MOR, respectively. Ten minutes after these treatments, mice were killed by decapitation and the striatum, cortex and hippocampus were dissected to determine endogenous concentrations of dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites using HPLC with electrochemical detection. Striatal DA, dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA) concentrations as well as cortical DA concentrations of the withdrawal groups decreased significantly with respect to the control groups. BAC attenuated the decrease in DA and DOPAC concentrations observed during the withdrawal, without modifying per se the control DA concentrations. No changes on 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) concentrations were observed during the MOR abstinence syndrome. The prevention caused by BAC on the decreased concentrations of DA induced by MOR withdrawal could have a therapeutic interest for the management of withdrawal syndrome.  相似文献   
30.
U-21,963, a New Antibiotic: I. Discovery and Biological Activity   总被引:1,自引:1,他引:1       下载免费PDF全文
A new antibiotic, U-21,963, is produced by a new strain of Trichoderma viride. Antibiotic activity can be demonstrated against both gram-positive and gram-negative bacteria and also against a wide variety of fungi. U-21,963 is not cross-resistant with other commonly used antibiotics. U-21,963 afforded no protection against Klebsiella pneumoniae, Streptococcus pyogenes, or Staphylococcus aureus when it was injected subcutaneously into mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号