首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3166篇
  免费   360篇
  国内免费   1篇
  3527篇
  2023年   34篇
  2022年   40篇
  2021年   93篇
  2020年   53篇
  2019年   60篇
  2018年   78篇
  2017年   57篇
  2016年   92篇
  2015年   157篇
  2014年   167篇
  2013年   187篇
  2012年   261篇
  2011年   236篇
  2010年   122篇
  2009年   112篇
  2008年   143篇
  2007年   157篇
  2006年   145篇
  2005年   141篇
  2004年   116篇
  2003年   113篇
  2002年   101篇
  2001年   39篇
  2000年   35篇
  1999年   47篇
  1998年   35篇
  1997年   26篇
  1996年   39篇
  1995年   28篇
  1994年   17篇
  1993年   23篇
  1992年   31篇
  1991年   22篇
  1990年   37篇
  1989年   38篇
  1988年   32篇
  1987年   22篇
  1986年   17篇
  1985年   21篇
  1984年   27篇
  1983年   19篇
  1981年   16篇
  1979年   26篇
  1978年   16篇
  1977年   13篇
  1974年   13篇
  1973年   19篇
  1972年   17篇
  1970年   17篇
  1969年   15篇
排序方式: 共有3527条查询结果,搜索用时 14 毫秒
991.
992.
Realistic modelling of the interaction between surgical instruments and human organs has been recognised as a key requirement in the development of high-fidelity surgical simulators. Primarily due to computational considerations, most of the past real-time surgical simulation research has assumed linear elastic behaviour for modelling tissues, even though human soft tissues generally possess non-linear properties. For a non-linear model, the well-known Poynting effect developed during shearing of the tissue results in normal forces not seen in a linear elastic model. Using constitutive equations of non-linear tissue models together with experiments, we show that the Poynting effect results in differences in force magnitude larger than the absolute human perception threshold for force discrimination in some tissues (e.g. myocardial tissues) but not in others (e.g. brain tissue simulants).  相似文献   
993.
994.

Objective

Due to its anti-oxidant and anti-inflammatory properties, bilirubin has been associated with reduced cardiovascular risk. A recent study demonstrated an L-shaped association of pre-treatment total bilirubin levels with total mortality in a statin-treated cohort. We therefore investigated the association of total bilirubin levels with total mortality in a nationally representative sample of older adults from the general population.

Methods

A total of 4,303 participants aged ≥60 years from the United States National Health and Nutrition Examination Survey 1999–2004 with mortality data followed up through December 31, 2006 were included in this analysis, with a mean follow-up period of 4.5 years.

Results

Participants with total bilirubin levels of 0.1–0.4 mg/dl had the highest mortality rate (19.8%). Compared with participants with total bilirubin levels of 0.5–0.7 mg/dl and in a multivariable regression model, a lower total bilirubin level of 0.1–0.4 mg/dl was associated with higher risk of total mortality (hazard ratios, 1.36; 95% confidence interval, 1.07–1.72; P = 0.012), while higher levels (≥0.8 mg/dl) also tended to be associated with higher risk of total mortality, but this did not reach statistical significance (hazard ratios, 1.24; 95% confidence interval, 0.98–1.56; P = 0.072).

Conclusion

In this nationally representative sample of older adults, the association of total bilirubin levels with total mortality was the highest among those with a level between 0.1 and 0.4 mg/dl. Further studies are needed to investigate whether higher total bilirubin levels could be associated with a higher mortality risk, compared to a level of 0.5–0.7 mg/dl.  相似文献   
995.
Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle perspective. Additionally, due to effects of exogenous selection, a given hybrid generation may be especially well-suited to hastening introgression under particular environmental conditions.  相似文献   
996.
Transgenic plants as factories for biopharmaceuticals   总被引:33,自引:0,他引:33  
Plants have considerable potential for the production of biopharmaceutical proteins and peptides because they are easily transformed and provide a cheap source of protein. Several biotechnology companies are now actively developing, field testing, and patenting plant expression systems, while clinical trials are proceeding on the first biopharmaceuticals derived from them. One transgenic plant-derived biopharmaceutical, hirudin, is now being commercially produced in Canada for the first time. Product purification is potentially an expensive process, and various methods are currently being developed to overcome this problem, including oleosin-fusion technology, which allows extraction with oil bodies. In some cases, delivery of a biopharmaceutical product by direct ingestion of the modified plant potentially removes the need for purification. Such biopharmaceuticals and edible vaccines can be stored and distributed as seeds, tubers, or fruits, making immunization programs in developing countries cheaper and potentially easier to administer. Some of the most expensive biopharmaceuticals of restricted availability, such as glucocerebrosidase, could become much cheaper and more plentiful through production in transgenic plants.  相似文献   
997.
Entecavir (ETV), a potent inhibitor of the hepadnaviral polymerases, prevented the development of persistent infection when administered in the early stages of duck hepatitis B virus (DHBV) infection. In a preliminary experiment, ETV treatment commenced 24 h before infection showed no significant advantage over simultaneous ETV treatment and infection. In two further experiments 14-day-old ducks were inoculated with DHBV-positive serum containing 10(4), 10(6), 10(8), or 5 x 10(8) viral genomes (vge) and were treated orally with 1.0 mg/kg of body weight/day of ETV for 14 or 49 days. A relationship between virus dose and infection outcome was seen: non-ETV-treated ducks inoculated with 10(4) vge had transient infection, while ducks inoculated with higher doses developed persistent infection. ETV treatment for 49 days did not prevent initial infection of the liver but restricted the spread of infection more than approximately 1,000-fold, a difference which persisted throughout treatment and for up to 49 days after withdrawal. Ultimately, three of seven ETV-treated ducks resolved their DHBV infection, while the remaining ducks developed viremia and persistent infection after a lag period of at least 63 days. ETV treatment for 14 days also restricted the spread of infection, leading to marked and sustained reductions in the number of DHBV-positive hepatocytes in 7 out of 10 ducks. In conclusion, short-term suppression with ETV provides opportunity for the immune response to successfully control DHBV infection. Since DHBV infection of ducks provides a good model system for HBV infection in humans, it seems likely that ETV may be useful in postexposure therapy for HBV infection aimed at preventing the development of persistent infection.  相似文献   
998.
Histidine-rich glycoprotein (HRG) is an alpha2-glycoprotein found in mammalian plasma at high concentrations (approximately 150 microg/ml) and is distinguished by its high content of histidine and proline. Structurally, HRG is a modular protein consisting of an N-terminal cystatin-like domain (N1N2), a central histidine-rich region (HRR) flanked by proline-rich sequences, and a C-terminal domain. HRG binds to cell surfaces and numerous ligands such as plasminogen, fibrinogen, thrombospondin, C1q, heparin, and IgG, suggesting that it may act as an adaptor protein either by targeting ligands to cell surfaces or by cross-linking soluble ligands. Despite the suggested functional importance of HRG, the cell-binding characteristics of the molecule are poorly defined. In this study, HRG was shown to bind to most cell lines in a Zn(2+)-dependent manner, but failed to interact with the Chinese hamster ovary cell line pgsA-745, which lacks cell-surface glycosaminoglycans (GAGs). Subsequent treatment of GAG-positive Chinese hamster ovary cells with mammalian heparanase or bacterial heparinase III, but not chondroitinase ABC, abolished HRG binding. Furthermore, blocking studies with various GAG species indicated that only heparin was a potent inhibitor of HRG binding. These data suggest that heparan sulfate is the predominate cell-surface ligand for HRG and that mammalian heparanase is a potential regulator of HRG binding. Using recombinant forms of full-length HRG and the N-terminal N1N2 domain, it was shown that the N1N2 domain bound specifically to immobilized heparin and cell-surface heparan sulfate. In contrast, synthetic peptides corresponding to the Zn(2+)-binding HRR of HRG did not interact with cells. Furthermore, the binding of full-length HRG, but not the N1N2 domain, was greatly potentiated by physiological concentrations of Zn2+. Based on these data, we propose that the N1N2 domain binds to cell-surface heparan sulfate and that the interaction of Zn2+ with the HRR can indirectly enhance cell-surface binding.  相似文献   
999.
Pathogenic bacteria have evolved numerous mechanisms to evade the human immune system and have developed widespread resistance to traditional antibiotics. We studied the human pathogen Neisseria meningitidis and present evidence of novel mechanisms of resistance to the human antimicrobial peptide LL-37. We found that bacteria attached to host epithelial cells are resistant to 10 μM LL-37 whereas bacteria in solution or attached to plastic are killed, indicating that the cell microenvironment protects bacteria. The bacterial endotoxin lipooligosaccharide and the polysaccharide capsule contribute to LL-37 resistance, probably by preventing LL-37 from reaching the bacterial membrane, as more LL-37 reaches the bacterial membrane on both lipooligosaccharide-deficient and capsule-deficient mutants whereas both mutants are also more susceptible to LL-37 killing than the wild-type strain. N. meningitidis bacteria respond to sublethal doses of LL-37 and upregulate two of their capsule genes, siaC and siaD, which further results in upregulation of capsule biosynthesis.Neisseria meningitidis (meningococci) is a gram-negative, aerobic diplococci that is an obligate human pathogen. Infections caused by N. meningitidis are an important cause of morbidity and mortality worldwide. Meningococci colonize the nasopharyngeal mucosa of approximately 10% of healthy individuals but can cross epithelial and endothelial cell barriers and enter the bloodstream, causing septicemia, with mortality rates of 20 to 50% (4). Meningitis occurs when bacteria transverse the blood cerebrospinal fluid, causing a fatal outcome in 15 to 20% of infected patients. Bacterial adherence is initially mediated by type IV pili with host cell receptors. PilT is the molecular motor responsible for pili retraction, which mediates a tight interaction. An important virulence factor of N. meningitidis is the endotoxin lipooligosaccharide (LOS), which is located in the bacterial outer cell membrane. Meningococcal LOS is composed of a conserved inner core of membrane-associated lipid A (16) to which variable α- and β-chains attach (13).As one of many first lines of defense against invading pathogens like Neisseria bacteria, epithelial cells produce antimicrobial peptides (AMPs). These peptides are effector molecules for the innate immune response, with both direct antimicrobial activity and a broad spectrum of immunomodulatory functions (18, 22). LL-37 is the single known human cathelicidin and is expressed in various immune cells as well as in epithelial cells of inflamed skin, mouth, tongue, esophagus, and lungs. It has been shown that LL-37 interacts with bacterial membranes through both electrostatic and hydrophobic effects. It remains unknown whether LL-37 ultimately kills bacteria by formation of torroidal pores as described by Henzler Wildman et al. (11) or by detergent-like disintegration of the membrane via the carpet model as described by Shai (24), but increasing membrane permeability, osmotic swelling, and loss of the vital proton gradient are important characteristics of the killing process (21). Membrane interactions of LL-37 (and other AMPs) appear to be highly selective for the negative surface charge on prokaryotic membranes. However, it has been shown by Tzeng et al. (28) that meningococci regulate AMP attack via mechanisms that include lipid A modification and an efflux pump. LL-37 toxicity for eukaryotic cells remains low, probably because eukaryotic cell membranes do not have a negative net charge (31).In order to further investigate the bactericidal activity of LL-37, various Neisseria strains were examined for their susceptibility to LL-37. Our results show that LL-37 exhibits potent killing activity against N. meningitidis, whereas adhesion to host cells, LOS, and the capsule was found to contribute to resistance to LL-37. Neisseria bacteria can respond to sublethal doses of LL-37 to increase capsule production.  相似文献   
1000.
An understanding of the mechanism(s) by which some individuals spontaneously control human immunodeficiency virus (HIV)/simian immunodeficiency virus replication may aid vaccine design. Approximately 50% of Indian rhesus macaques that express the major histocompatibility complex (MHC) class I allele Mamu-B*08 become elite controllers after infection with simian immunodeficiency virus SIVmac239. Mamu-B*08 has a binding motif that is very similar to that of HLA-B27, a human MHC class I allele associated with the elite control of HIV, suggesting that SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+) animals may be a good model for the elite control of HIV. The association with MHC class I alleles implicates CD8+ T cells and/or natural killer cells in the control of viral replication. We therefore introduced point mutations into eight Mamu-B*08-restricted CD8+ T-cell epitopes to investigate the contribution of epitope-specific CD8+ T-cell responses to the development of the control of viral replication. Ten Mamu-B*08+ macaques were infected with this mutant virus, 8X-SIVmac239. We compared immune responses and viral loads of these animals to those of wild-type SIVmac239-infected Mamu-B*08+ macaques. The five most immunodominant Mamu-B*08-restricted CD8+ T-cell responses were barely detectable in 8X-SIVmac239-infected animals. By 48 weeks postinfection, 2 of 10 8X-SIVmac239-infected Mamu-B*08+ animals controlled viral replication to <20,000 viral RNA (vRNA) copy equivalents (eq)/ml plasma, while 10 of 15 wild-type-infected Mamu-B*08+ animals had viral loads of <20,000 vRNA copy eq/ml (P = 0.04). Our results suggest that these epitope-specific CD8+ T-cell responses may play a role in establishing the control of viral replication in Mamu-B*08+ macaques.A few individuals spontaneously control the replication of human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) to very low levels. The precise mechanisms underlying this control are of great interest, as a clear understanding of what constitutes a successful immune response may aid in developing an AIDS vaccine. Particularly pressing questions for vaccine design include which proteins to use as immunogens, the extent to which increasing the breadth and magnitude of responses is advantageous, how immunodomination affects T-cell responses, and if biasing the immune response toward particular effector profiles is beneficial. Characterization of immune responses made by elite controllers (ECs) may reveal patterns that can then be applied to vaccine formulation and evaluation.HIV ECs are generally not infected with grossly unfit viruses (6, 42). Instead, elite control of immunodeficiency virus replication is correlated with the presence of particular major histocompatibility complex class I (MHC-I) alleles (11, 12, 18, 32, 41, 55). The association of MHC-I alleles with the control of viremia implicates CD8+ T cells as being mediators of this immune containment. Several lines of evidence support this hypothesis. These lines of evidence include the correlation between the appearance of CD8+ T-cell responses and the resolution of peak viremia during acute infection (7, 29), the finding that alleles associated with viral control restrict dominant acute-phase CD8+ T-cell responses (3), and the finding that responses directed against epitopes restricted by these alleles frequently select for viral escape variants (4, 27, 38). Perhaps most compelling is the observation that for a few HIV-infected individuals, the selection of escape variants by an immunodominant HLA-B27-restricted T-cell response temporally preceded substantial increases in viremia (17, 21, 53). While viruses exhibiting escape variants in epitopes restricted by protective alleles are often detectably less fit in vitro (10, 38, 43, 51), recent data have found normal, high levels of replication in vivo upon the transmission of some of these variants (15).The association of control with MHC-I alleles does not, of course, implicate solely CD8+ T cells. MHC-I molecules are also ligands for killer immunoglobulin receptors (KIRs), which are predominantly expressed on natural killer (NK) cells. Genetic studies of HIV-infected humans suggest a model in which individuals with particular KIR/HLA combinations are predisposed to control HIV replication more readily than those with other KIR/HLA combinations (36, 37). These data were supported by functional studies of this KIR/HLA pairing in vitro, which demonstrated an inhibition of HIV replication by such NK cells (2). The relative contributions of NK and CD8+ T-cell responses to control have yet to be elucidated and may be closely intertwined.Previously, the experimental depletion of circulating CD8+ cells from SIVmac239-infected ECs resulted in a sharp spike in viremia, which resolved as CD8+ cells repopulated the periphery (19). During the reestablishment of control of SIV replication, CD8+ T cells targeting multiple epitopes restricted by alleles associated with elite control expanded in frequency, providing strong circumstantial evidence for their role in maintaining elite control (19, 31). However, CD8 depletion antibodies used in macaques also remove NK cells, which, at least in vitro, also inhibit SIV replication (19). It was therefore difficult to make definitive conclusions regarding the separate contributions of these subsets to maintaining the control of SIV replication in vivo.Here we investigate elite control in the rhesus macaque model for AIDS. We focused on the macaque MHC-I allele most tightly associated with the control of SIVmac239, Mamu-B*08. Approximately 50% of Mamu-B*08-positive (Mamu-B*08+) animals infected with SIVmac239 become ECs (32). Peptides presented by Mamu-B*08 share a binding motif with peptides presented by HLA-B27. Although these two MHC-I genes are dissimilar in domains that are important for peptide binding, each molecule can bind peptides that are presented by the other molecule (33). This striking similarity suggests that the elite control of SIVmac239 in Mamu-B*08+ animals is a good model for the elite control of HIV.Seven SIVmac239 epitopes restricted by Mamu-B*08 accrue variation in Mamu-B*08+ rhesus macaques (30, 31). For an eighth Mamu-B*08-restricted epitope, which is also restricted by Mamu-B*03 (Mamu-B*03 differs from Mamu-B*08 by 2 amino acids in the α1 and α2 domains [9, 32]), escape has been documented only for SIV-infected Mamu-B*03+ macaques (16). Variation in these CD8+ T-cell epitopes accumulates with different kinetics, starting during acute infection for those targeted by high-magnitude responses.In this study, we addressed the question of whether the elite control of SIVmac239 in Mamu-B*08+ animals is mediated by the known high-frequency CD8+ T-cell responses targeting Mamu-B*08-restricted epitopes. To this end, we introduced point mutations into eight epitopes, with the goal of reducing or abrogating immune responses directed against these epitopes during acute infection. We hypothesized that Mamu-B*08+ macaques would be unable to control SIV replication without these Mamu-B*08-restricted T-cell responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号