首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3520篇
  免费   391篇
  国内免费   1篇
  2023年   37篇
  2022年   41篇
  2021年   107篇
  2020年   56篇
  2019年   65篇
  2018年   83篇
  2017年   61篇
  2016年   105篇
  2015年   170篇
  2014年   184篇
  2013年   205篇
  2012年   279篇
  2011年   256篇
  2010年   132篇
  2009年   120篇
  2008年   154篇
  2007年   167篇
  2006年   150篇
  2005年   151篇
  2004年   121篇
  2003年   117篇
  2002年   111篇
  2001年   43篇
  2000年   42篇
  1999年   56篇
  1998年   39篇
  1997年   32篇
  1996年   43篇
  1995年   30篇
  1994年   18篇
  1993年   27篇
  1992年   34篇
  1991年   31篇
  1990年   38篇
  1989年   41篇
  1988年   33篇
  1987年   25篇
  1986年   21篇
  1985年   25篇
  1984年   35篇
  1983年   19篇
  1981年   18篇
  1979年   29篇
  1978年   19篇
  1976年   17篇
  1974年   19篇
  1973年   22篇
  1972年   21篇
  1970年   22篇
  1969年   26篇
排序方式: 共有3912条查询结果,搜索用时 15 毫秒
161.
The high diversity of microbial communities hampers predictions about their responses to global change. Here we investigate the potential for using a phylogenetic, trait-based framework to capture the response of bacteria and fungi to global change manipulations. Replicated grassland plots were subjected to 3+ years of drought and nitrogen fertilization. The responses of leaf litter bacteria and fungi to these simulated changes were significantly phylogenetically conserved. Proportional changes in abundance were highly correlated among related organisms, such that relatives with approximately 5% ribosomal DNA genetic distance showed similar responses to the treatments. A microbe''s change in relative abundance was significantly correlated between the treatments, suggesting a compromise between numerical abundance in undisturbed environments and resistance to change in general, independent of disturbance type. Lineages in which at least 90% of the microbes shared the same response were circumscribed at a modest phylogenetic depth (τD 0.014–0.021), but significantly larger than randomized simulations predict. In several clades, phylogenetic depth of trait consensus was higher. Fungal response to drought was more conserved than was response to nitrogen fertilization, whereas bacteria responded equally to both treatments. Finally, we show that a bacterium''s response to the manipulations is correlated with its potential functional traits (measured here as the number of glycoside hydrolase genes encoding the capacity to degrade different types of carbohydrates). Together, these results suggest that a phylogenetic, trait-based framework may be useful for predicting shifts in microbial composition and functioning in the face of global change.  相似文献   
162.
163.
Sickle cell disease (SCD) is the most common inherited hemoglobinopathy worldwide. Our previous results indicate that the reduced oxidative stress capacity of sickle erythrocytes may be caused by decreased expression of NRF2 (Nuclear factor (erythroid-derived 2)-like 2), an oxidative stress regulator. We found that activation of NRF2 with sulforaphane (SFN) in erythroid progenitors significantly increased the expression of NRF2 targets HMOX1, NQO1, and HBG1 (subunit of fetal hemoglobin) in a dose-dependent manner. Therefore, we hypothesized that NRF2 activation with SFN may offer therapeutic benefits for SCD patients by restoring oxidative capacity and increasing fetal hemoglobin concentration. To test this hypothesis, we performed a Phase 1, open-label, dose-escalation study of SFN, contained in a broccoli sprout homogenate (BSH) that naturally contains SFN, in adults with SCD. The primary and secondary study endpoints were safety and physiological response to NRF2 activation, respectively. We found that BSH was well tolerated, and the few adverse events that occurred during the trial were not likely related to BSH consumption. We observed an increase in the mean relative whole blood mRNA levels for the NRF2 target HMOX1 (p = 0.02) on the last day of BSH treatment, compared to pre-treatment. We also observed a trend toward increased mean relative mRNA levels of the NRF2 target HBG1 (p = 0.10) from baseline to end of treatment, but without significant changes in HbF protein. We conclude that BSH, in the provided doses, is safe in stable SCD patients and may induce changes in gene expression levels. We therefore propose investigation of more potent NRF2 inducers, which may elicit more robust physiological changes and offer clinical benefits to SCD patients.Trial Registration: ClinicalTrials.gov NCT01715480  相似文献   
164.
165.
166.
167.
Migration (seasonal round-trip movement across relatively large distances) is common within the animal kingdom. This behaviour often incurs extreme costs in terms of time, energy, and/or survival. Climate, food, predation, and breeding are typically suggested as factors favouring the evolution of migration. Although disease regulation has also been considered, few studies consider it as the primary selective pressure for migration. Our aim was to determine, theoretically, under what conditions migration could reduce the long-term disease prevalence within a population, assuming the only benefits of migration are infection-related. We created two mathematical models, one where the population migrates annually and one where the entire population remains on the breeding ground year-round. In each we simulated disease transmission (frequency-dependent and density-dependent) and quantified eventual disease prevalence. In the migration model we varied the time spent migrating, disease-related migration mortality, and the overall migration mortality. When we compared results from the two models, we found that migration generally lowered disease prevalence. We found a population was healthier if it: (1) spent more time migrating (assuming no disease transmission during migration), (2) had higher disease-induced migration mortality, and (3) had an overall higher mortality when migrating (compared to not migrating). These results provide support for two previously proposed mechanisms by which migration can reduce disease prevalence (migratory escape and migratory cull), and also demonstrate that non-selective mortality during migration is a third mechanism. Our findings indicate that migration may be evolutionarily advantageous even if the only migratory benefit is disease control.  相似文献   
168.
Sirex noctilio F. (Hymenoptera: Siricidae) is a woodwasp of pine trees that has recently invaded and established in North American forests. Although S. noctilio has had a limited impact in North America to date, there is some concern that it could have a significant impact on pine plantations, especially in the southeastern U.S.A. Moreover, there are few data on the flight capacity of male S. noctilio. We found no association between parasitism by D. siricidicola and whether or not S. noctilio initiated flight on the flight mill. Male wasps that were parasitized by nematodes were heavier than non-parasitized males, but there was no significant difference in mass between parasitized and non-parasitized females. We also examined the flight capacity of male and female S. noctilio in relation to nematode parasitism, body mass, temperature (for only males), and diel period. Body mass, temperature, and diel period affected flight in S. noctilio such that wasps were generally observed to fly faster, farther, and more frequently if they were heavier, flying at warmer temperatures, and flying during the photoperiod. The fact that nematode-parasitized male wasps were found to fly farther than the non-parasitized males is consistent with the hypothesis that nematode parasitism does not negatively affect the flight capacity of S. noctilio.  相似文献   
169.
170.
Different camouflages work best with some background matching colour. Our understanding of the evolution of skin colour is based mainly on the genetics of pigmentation (“background matching”), with little known about the evolution of the neuroendocrine systems that facilitate “background adaptation” through colour phenotypic plasticity. To address the latter, we studied the evolution in vertebrates of three genes, pomc, pmch and pmchl, that code for α‐MSH and two melanin‐concentrating hormones (MCH and MCHL). These hormones induce either dispersion/aggregation or the synthesis of pigments. We find that α‐MSH is highly conserved during evolution, as is its role in dispersing/synthesizing pigments. Also conserved is the three‐exon pmch gene that encodes MCH, which participates in feeding behaviours. In contrast, pmchl (known previously as pmch), is a teleost‐specific intron‐less gene. Our data indicate that in zebrafish, pmchl‐expressing neurons extend axons to the pituitary, supportive of an MCHL hormonal role, whereas zebrafish and Xenopus pmch+ neurons send axons dorsally in the brain. The evolution of these genes and acquisition of hormonal status for MCHL explain different mechanisms used by vertebrates to background‐adapt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号