首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23772篇
  免费   2862篇
  国内免费   7篇
  26641篇
  2021年   296篇
  2019年   212篇
  2018年   259篇
  2017年   254篇
  2016年   389篇
  2015年   646篇
  2014年   733篇
  2013年   895篇
  2012年   1126篇
  2011年   1167篇
  2010年   718篇
  2009年   639篇
  2008年   948篇
  2007年   1046篇
  2006年   936篇
  2005年   899篇
  2004年   864篇
  2003年   818篇
  2002年   816篇
  2001年   671篇
  2000年   698篇
  1999年   593篇
  1998年   350篇
  1997年   299篇
  1996年   276篇
  1995年   261篇
  1994年   242篇
  1993年   264篇
  1992年   483篇
  1991年   418篇
  1990年   433篇
  1989年   404篇
  1988年   430篇
  1987年   412篇
  1986年   340篇
  1985年   379篇
  1984年   359篇
  1983年   323篇
  1982年   298篇
  1981年   269篇
  1980年   238篇
  1979年   327篇
  1978年   288篇
  1977年   250篇
  1976年   252篇
  1975年   226篇
  1974年   256篇
  1973年   264篇
  1972年   213篇
  1971年   199篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
A family of variants of the PRM promoter of lambda phage was constructed, bearing nine base pair substitutions in a stretch of the spacer DNA separating the contacted -10 and -35 regions. The substituted sequences were chosen for their potential to adopt structures different from those of average B-form DNA and thus to affect the interaction of RNA polymerase with the two contacted regions. Characterization of the promoters in vitro and in vivo provides additional support for the lack of specific contacts in the substituted spacer region and shows that a small change in the relative rotational orientation of the -10 and -35 regions is inconsequential to promoter function. However, a 2-3-fold reduction in promoter activity is observed with promoters bearing substitutions of nonalternating dG-dC base pairs in either orientation. This corroborates other studies indicating the anomalous behavior of such sequences and suggests that the structure of the spacer DNA can modulate promoter recognition.  相似文献   
103.
The role of the carbohydrate residues of fibronectin concerning the specificities of that glycoprotein to interact with fibroblastic cell surfaces, gelatin, and heparin was examined. Tunicamycin was used to produce carbohydrate-depleted fibronectin; it was synthesized by cultured fibroblasts. Unglycosylated and glycosylated fibronectins were analyzed for their ability to bind gelatin and heparin, using affinity columns. Fibronectin-coated surfaces were used to quantitatively measure cell adhesion and spreading. The results showed that the lack of carbohydrates significantly increased the interaction of the protein with gelatin and markedly enhanced its ability to promote adhesion and spreading of fibroblasts. In contrast, the binding of fibronectin to heparin was not influenced by glycosylation. The composite data indicate that the Asn-linked oligosaccharides of fibronectin act as modulators of biological functions of the glycoprotein.  相似文献   
104.
Orotidine-5'-monophosphate decarboxylase (OD-Case) catalyzes the conversion of orotidine 5'-monophosphate to UMP. In mammals, ODCase is present as part of a bifunctional protein which also contains orotate phosphoribosyltransferase; the preceding enzyme in the de novo UMP biosynthetic pathway. We have isolated a plasmid (pMEJ) which contains a cDNA for the ODCase domain of UMP synthase. Insertion of this sequence into an Escherichia coli expression vector (pUC12) has allowed for the expression of ODCase and not orotate phosphoribosyltransferase in E. coli. The molecular weight of the expressed protein is 26,000-27,300 from immunoblot analysis which corresponds closely to the molecular weight of the ODCase domain (28,500) isolated by tryptic digestion of UMP synthase. We have sequenced the cDNA insert of pMEJ and deduced the amino acid sequence. The molecular weight of the ODCase domain calculated from the amino acid sequence in 28,654. Comparison of the deduced amino acid sequence from pMEJ with that for yeast ODCase (a monofunctional protein) demonstrated that 52% of the amino acids were identical when the two sequences are compared. Furthermore, several stretches of the amino acid sequence have 80% or greater absolute homology.  相似文献   
105.
Heterodimers of tyrosyl-tRNA synthetase from Bacillus stearothermophilus have been produced by mutagenesis at the subunit interface. Oppositely charged groups have been engineered into the subunits so that they can form a complementary pair. Wild-type tyrosyl-tRNA synthetase is a symmetrical dimer in which the side chains of the 2 Phe-164 residues interact at the subunit interface. Phe-164 was mutated to Asp in tyrosyl-tRNA synthetase and to Lys in a truncated enzyme (des-(321-419)tyrosyl-tRNA synthetase) which lacks the two tRNA-binding sites, but which can catalyze pyrophosphate exchange. The size difference allows subunit association to be studied by gel filtration chromatography. These changes induce reversible dissociation from active dimers into inactive monomers at pH values which favor ionization at position 164. A mixture of the two mutants near neutral pH is apparently fully active in pyrophosphate exchange and consists of a heterodimer of [Asp164]tyrosyl-tRNA synthetase and [Lys164]des-(321-419)tyrosyl-tRNA synthetase. Despite having only one binding site for tRNA, heterodimer has full aminoacylation activity at high concentrations of tyrosine. We have therefore produced a family of dimers that differ in stability near neutral pH. This novel approach using protein engineering allows specific dimerization of subunits of the same size that have different defined mutations, each subunit being tagged by the charge. Such hybrid proteins can be used to study subunit interaction.  相似文献   
106.
107.
At low temperature and low salt concentration, both imino proton and 31p-nmr spectra of DNA complexes with the intercalators ethidium and propidium are in the slow-exchange region. Increasing temperature and/or increasing salt concentration results in an increase in the site exchange rate. Ring-current effects from the intercalated phenanthridinium ring of ethidium and propidium cause upfield shifts of the imino protons of A · T and G · C base pairs, which are quite similar for the two intercalators. The limiting induced chemical shifts for propidium and ethidium at saturation of DNA binding sites are approximately 0.9 ppm for A · T and 1.1 ppm for G · C base pairs. The similarity of the shifts for ethidium and propidium, in both the slow- and fast-exchange regions over the entire titration of DNA, shows that a binding model for propidium with neighbor-exclusion binding and negative ligand cooperativity is correct. The fact that a unique chemical shift is obtained for imino protons at intercalated sites over the entire titration and that no unshifted imino proton peaks remain at saturation binding of ethidium and propidium supports a neighbor-exclusion binding model with intercalators bound at alternating sites rather than in clusters on the double helix. Addition of ethidium and propidium to DNA results in downfield shifts in 31P-nmr spectra. At saturation ratios of intercalator to DNA base pairs in the titration, a downfield shoulder (approximately ?2.7 ppm) is apparent, which accounts for approximately 15% of the spectral area. The main peak is at ?3.9 to ?4.0 ppm relative to ?4.35 in uncomplexed DNA. The simplest neighbor-binding model predicts a downfield peak with approximately 50% of the spectral area and an upfield peak, near the chemical shift for uncomplexed DNA, with 50% of the area. This is definitely not the case with these intercalators. The observed chemical shifts and areas for the DNA complexes can be explained by models, for example, that involve spreading the intercalation-induced unwinding of the double helix over several base pairs and/or a DNA sequence- and conformation-dependent heterogeneity in intercalation-induced chemical shifts and resulting exchange rates.  相似文献   
108.
109.
The feasibility of using RNA synthesis in freshly isolated, human peripheral blood lymphocytes to detect 6-thioguanine (TG)- and 8-azaguanine (AG)-resistant variants in an autoradiographic assay similar to that of Strauss and Albertini (1979) has been evaluated. In phytohemagglutinin (PHA)-stimulated cultures RNA synthesis and HPRT activity began well in advance of DNA synthesis and increased in parallel during the first 44 h of culture. Introduction of TG or AG with PHA at the beginning of culture completely inhibited DNA synthesis during the first 44 h and reduced RNA synthesis to low levels within 24 h. When TG or AG was added after cells had been in culture for 38 h, DNA synthesis was reduced quickly while RNA synthesis was inhibited more slowly. An autoradiographic assay is described in which freshly isolated lymphocytes are cultured with PHA for 24 h, with or without TG or AG, then labeled with [3H]uridine for 1 h. TG-resistant and AG-resistant variant frequencies for 2 normal individuals and a Lesch-Nyhan individual were determined with this assay. The variant frequencies for the normal individuals ranged from 0.46 to 10.6 X 10(-5) depending upon the selective conditions used. All the Lesch-Nyhan cells were resistant to 0.2 microM-2 mM AG; some were sensitive to 0.2 mM TG and most were sensitive to 2.0 mM TG.  相似文献   
110.
The main transporting protein for vitamin A in rabbit serum, the retinol-binding protein (RBP), was isolated and its amino acid sequence determined. Rabbit RBP was found to be highly homologous to human RBP, whose amino acid sequence was elucidated earlier, and to rat RBP. The rat RBP sequence was obtained by combining information deduced from the nucleotide sequences of two overlapping cDNA clones with the NH2-terminal sequence of the isolated protein determined by automated Edman degradation. The identity between the three proteins is approximately 90%. The high degree of homology between RBP molecules from different species is probably explained by the fact that RBP participates in at least three types of molecular interactions: in the binding of prealbumin, in the interaction with retinol, and in the recognition of a specific cell surface receptor. All these interactions should lead to a conservation of RBP structure. The amino acid differences between rabbit, rat, and human RBP are discussed in light of the recent elucidation of the three-dimensional structure of human RBP. Hybridization of a probe isolated from a rat RBP cDNA clone to restriction enzyme-digested genomic DNA from rat and mouse suggests that RBP is encoded by a single gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号