首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
  2021年   1篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   6篇
  2003年   2篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1975年   1篇
排序方式: 共有50条查询结果,搜索用时 375 毫秒
31.
Primary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder caused by a failure of calcium sensing secondary to tumour development in one or more of the parathyroid glands. Parathyroid adenomas are comprised of distinct cellular subpopulations of variable clonal status that exhibit differing degrees of calcium responsiveness. To gain a clearer understanding of the relationship among cellular identity, tumour composition and clinical biochemistry in PHPT, we developed a novel single cell platform for quantitative evaluation of calcium sensing behaviour in freshly resected human parathyroid tumour cells. Live‐cell intracellular calcium flux was visualized through Fluo‐4‐AM epifluorescence, followed by in situ immunofluorescence detection of the calcium sensing receptor (CASR), a central component in the extracellular calcium signalling pathway. The reactivity of individual parathyroid tumour cells to extracellular calcium stimulus was highly variable, with discrete kinetic response patterns observed both between and among parathyroid tumour samples. CASR abundance was not an obligate determinant of calcium responsiveness. Calcium EC50 values from a series of parathyroid adenomas revealed that the tumours segregated into two distinct categories. One group manifested a mean EC50 of 2.40 mM (95% CI: 2.37–2.41), closely aligned to the established normal range. The second group was less responsive to calcium stimulus, with a mean EC50 of 3.61 mM (95% CI: 3.45–3.95). This binary distribution indicates the existence of a previously unappreciated biochemical sub‐classification of PHPT tumours, possibly reflecting distinct etiological mechanisms. Recognition of quantitative differences in calcium sensing could have important implications for the clinical management of PHPT.  相似文献   
32.
The mitogen-activated protein kinase extracellular regulated kinase (ERK) plays a key role in the regulation of cellular proliferation. Mutations in the ERK cascade occur in 30% of malignant tumors. Thus understanding how the kinase identifies its cognate substrates as well as monitoring the activity of ERK is central to cancer research and therapeutic development. ERK binds to its protein targets, both downstream substrates and upstream activators, via a binding site distinct from the catalytic site of ERK. The substrate sequences that bind, or dock, to these sites on ERK influence the efficiency of phosphorylation. For this reason, simple peptide substrates containing only phosphorylation sequences typically possess low efficiencies for ERK. Appending short docking peptides derived from full-length protein substrates and activators of ERK to a phosphorylation sequence increased the affinity of ERK for the phosphorylation sequence by as much as 200-fold while only slightly diminishing the maximal velocity of the reaction. The efficiency of the phosphorylation reaction was increased by up to 150-fold, while the specificity of the substrate for ERK was preserved. Simple modular peptide substrates, which can be easily tailored to possess high phosphorylation efficiencies, will enhance our understanding of the regulation of ERK and provide a tool for the development of new kinase assays.  相似文献   
33.

Background

Novel tuberculosis (TB) vaccines recently tested in humans have been designed to boost immunity induced by the current vaccine, Mycobacterium bovis Bacille Calmette-Guérin (BCG). Because BCG vaccination is used extensively in infants, this population group is likely to be the first in which efficacy trials of new vaccines will be conducted. However, our understanding of the complexity of immunity to BCG in infants is inadequate, making interpretation of vaccine-induced immune responses difficult.

Methods

To better understand BCG-induced immunity, we performed gene expression profiling in five 10-week old infants routinely vaccinated with BCG at birth. RNA was extracted from 12 hour BCG-stimulated or purified protein derivative of tuberculin (PPD)-stimulated PBMC, isolated from neonatal blood collected 10 weeks after vaccination. RNA was hybridised to the Sentrix® HumanRef-8 Expression BeadChip (Illumina) to measure expression of >16,000 genes.

Results

We found that ex vivo stimulation of PBMC with PPD and BCG induced largely similar gene expression profiles, except that BCG induced greater macrophage activation. The peroxisome proliferator-activated receptor (PPAR) signaling pathway, including PPAR-γ, involved in activation of the alternative, anti-inflammatory macrophage response was down-regulated following stimulation with both antigens. In contrast, up-regulation of genes associated with the classic, pro-inflammatory macrophage response was noted. Further analysis revealed a decrease in the expression of cell adhesion molecules (CAMs), including integrin alpha M (ITGAM), which is known to be important for entry of mycobacteria into the macrophage. Interestingly, more leukocyte genes were down-regulated than up-regulated.

Conclusion

Our results suggest that a combination of suppressed and up-regulated genes may be key in determining development of protective immunity to TB induced by vaccination with BCG.  相似文献   
34.
Injection of a porcine cytosolic sperm factor (SF) or of a porcine testicular extract into mammalian eggs triggers oscillations of intracellular free calcium ([Ca(2+)](i)) similar to those initiated by fertilization. To elucidate whether SF activates the phosphoinositide (PI) pathway, mouse eggs or SF were incubated with U73122, an inhibitor of events leading to phospholipase C (PLC) activation and/or of PLC itself. In both cases, U73122 blocked the ability of SF to induce [Ca(2+)](i) oscillations, although it did not inhibit Ca(2+) release caused by injection of inositol 1,4,5-triphosphate (IP(3)). The inactive analogue, U73343, had no effect on SF-induced Ca(2+) responses. To determine at the single cell level whether SF triggers IP(3) production concomitantly with a [Ca(2+)](i) rise, SF was injected into Xenopus oocytes and IP(3) concentration was determined using a biological detector cell combined with capillary electrophoresis. Injection of SF induced a significant increase in [Ca(2+)](i) and IP(3) production in these oocytes. Using ammonium sulfate precipitation, chromatographic fractionation, and Western blotting, we determined whether PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which are present in sperm and testis, are responsible for the Ca(2+) activity in the extracts. Our results revealed that active fractions do not contain PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which were present in inactive fractions. We also tested whether IP(3) could be the sensitizing stimulus of the Ca(2+)-induced Ca(2+) release mechanism, which is an important feature of fertilized and SF-injected eggs. Eggs injected with adenophostin A, an IP(3) receptor agonist, showed enhanced Ca(2+) responses to CaCl(2) injections. Thus, SF, and probably sperm, induces [Ca(2+)](i) rises by persistently stimulating IP(3) production, which in turn results in long-lasting sensitization of Ca(2+)-induced Ca(2+) release. Whether SF is itself a PLC or whether it acts upstream of the egg's PLCs remains to be elucidated.  相似文献   
35.
36.
With the impressive growth in gene sequence data that has become available, recombinant proteins represent an increasingly vast source of molecular components, with unique functional and structural properties, for use in biotechnological applications and devices. To facilitate the use, manipulation, and integration of such molecules into devices, a controllable method for their chemical modification was developed. In this approach, a trifunctional labeling reagent first recognizes and binds a His-tag on the target protein's surface. After binding, a photoreactive group on the trifunctional molecule is triggered to create a covalent linkage between the reagent and the target protein. The third moiety on the labeling reagent can be varied to bring unique chemical functionality to the target protein. This approach provides: (1) specificity in that only His-tagged targets are modified, (2) regio-specific control in that the target is modified proximal to the His-tag, the position of which can be varied, and (3) stoichiometric control in that the number modifications is limited by the binding capacity of the His-tag. Two such labeling reagents were designed, synthesized, and used to modify both N- and C-terminally His-tagged versions of the enzyme murine dihydrofolate reductase (mDHFR). The first reagent biotinylated the enzyme,while the second served to attach an oligonucleotide to yield a protein-DNA conjugate. In all cases, modification in this manner brings new functionality to the protein while leaving the enzymatic activity intact. The protein-DNA conjugate was used to specifically immobilize the active enzyme through DNA hybridization onto polystyrene microspheres, a step toward creating a functional protein microarray.  相似文献   
37.
Nelson AR  Borland L  Allbritton NL  Sims CE 《Biochemistry》2007,46(51):14771-14781
Translocation of membrane-impermeant molecules to the interior of living cells is a necessity for many biochemical investigations. Myristoylation was studied as a means to introduce peptides into living cells. Uptake of a myristoylated, fluorescent peptide was efficient in the B lymphocyte cell line BA/F3. In contrast, this cell line was resistant to uptake of a cell-penetrating peptide derived from the TAT protein. In BA/F3 cells, membrane association was shown to be rapid, reaching a maximum within 30 min. Cellular uptake of the peptide lagged the membrane association but occurred within a similar time frame. Experiments performed at 37 versus 4 degrees C demonstrated profound temperature dependence in the cellular uptake of myristoylated cargo. Myristoylated peptides with either positive or negative charge were shown to load efficiently. In contrast to TAT-conjugated cargo, pyrenebutyrate did not enhance cellular uptake of the myristoylated peptide. The myristoylated peptide did not adversely affect cell viability at concentrations up to 100 muM. This assessment of myristoyl-based transport provides fundamental data needed in understanding the intracellular delivery of myristoylated peptide cargoes for cell-based biochemical studies.  相似文献   
38.
Leaf development involves many complex genetic interactions,signals between adjacent cells or between more distant tissues and consequent changes in cell fate.This review describes three stages in leaf development where regulation by small RNAs have been used to modulate gene expression patterns.  相似文献   
39.

Background  

Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as E. coli by the introduction of catalysts for both of these processes.  相似文献   
40.
Prior strategies to measure inositol 1,4,5-trisphosphate (IP(3)) in single cells either have been qualitative or have had a limited spatial resolution. Capillary electrophoresis combined with a biological detector cell has been used to quantitate IP(3) in small regions of a Xenopus oocyte. To improve the detection limits of this method, we elucidated the experimental parameters which influenced the sensitivity and reliability of the IP(3)-detector cell coupled to capillary electrophoresis. The variables which influenced the detector cell were the magnitude of the voltage drop across the detector cell, the duration of this voltage drop, the direction of fluid flow in the capillary, the concentration of free Ca(2+) around the detector cell, and the presence of protease inhibitors during permeabilization of the detector cell. For the sample volumes imposed by the capillary diameter, the detector cell acted primarily as an IP(3) mass detector rather than a concentration detector. Characterization of the experimental variables influencing the sensitivity and reliability of this detector cell has the potential to enhance other analyte measurements performed by mating capillary electrophoresis with a biological detector cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号