首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   10篇
  147篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   17篇
  2011年   10篇
  2010年   10篇
  2009年   6篇
  2008年   15篇
  2007年   13篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   1篇
  1998年   2篇
  1996年   6篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1985年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
71.
We isolated a replication thermosensitive mutant of the theta-type lactococcal pUCL22 replicon. An improved version of this thermosensitive replicon was obtained by fusioning the replication repA gene with the downstream repB gene. The resulting plasmid was named pUCB3522Ts. It is highly instable at 42°C in Enterococcus faecalis. Integration into the chromosome via homologous recombination was monitored using the npr gene of E. faecalis JH2-2 as a target. A 513 bp PCR amplification product from an internal region of this npr gene was cloned into pUCB3522Ts. Integration of this construction into the JH2-2 npr gene was selected by shift temperature, from 30°C to 42°C. 85% of the analysed clones showed integration into the npr gene, demonstrating the practicality of this thermosensitive replicon as a genetic integrative tool for E. faecalis.  相似文献   
72.
Recently, we reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. Because these inhibitors contained some natural amino acids, we would need to improve their enzymatic stability in vivo and permeability across the blood–brain barrier, so that they become practically useful. Subsequently, non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold, 2,6-pyridenedicarboxylic, chelidamic or chelidonic moiety, at the P2 position were reported. These inhibitors were designed based on the conformer of docked inhibitor in BACE1. In this study, we discuss the role and significance of interactions between Arg235 of BACE1 and its inhibitor in BACE1 inhibitory mechanism. Moreover, we designed more potent small-sized BACE1 inhibitors with a 2,6-pyridinedicarboxylic scaffold at the P2 position, that were optimized for the interactions with Arg235 of BACE1.  相似文献   
73.
Abstract

Piperazinone nucleosides can be formed by N-glycosylation with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose of either piperazin-2-ones or pyrazin-2-ones followed by reduction of the heterocycle with rhodium on alumina. All the prepared compounds were tested for their activity against the Visna virus, but did not show significant antiviral activity.  相似文献   
74.
PLAA (ortholog of yeast Doa1/Ufd3, also know as human PLAP or phospholipase A2-activating protein) has been implicated in a variety of disparate biological processes that involve the ubiquitin system. It is linked to the maintenance of ubiquitin levels, but the mechanism by which it accomplishes this is unclear. The C-terminal PUL (PLAP, Ufd3p, and Lub1p) domain of PLAA binds p97, an AAA ATPase, which among other functions helps transfer ubiquitinated proteins to the proteasome for degradation. In yeast, loss of Doa1 is suppressed by altering p97/Cdc48 function indicating that physical interaction between PLAA and p97 is functionally important. Although the overall regions of interaction between these proteins are known, the structural basis has been unavailable. We solved the high resolution crystal structure of the p97-PLAA complex showing that the PUL domain forms a 6-mer Armadillo-containing domain. Its N-terminal extension folds back onto the inner curvature forming a deep ridge that is positively charged with residues that are phylogenetically conserved. The C terminus of p97 binds in this ridge, where the side chain of p97-Tyr805, implicated in phosphorylation-dependent regulation, is buried. Expressed in doa1Δ null cells, point mutants of the yeast ortholog Doa1 that disrupt this interaction display slightly reduced ubiquitin levels, but unlike doa1Δ null cells, showed only some of the growth phenotypes. These data suggest that the p97-PLAA interaction is important for a subset of PLAA-dependent biological processes and provides a framework to better understand the role of these complex molecules in the ubiquitin system.  相似文献   
75.
The stability of the tri–μ–hydrido–bis[(η5–C5Me5)aluminum], Cp*2Al2H3, 1 is studied at B3LYP/6–311+G(d,p), CCSD(T)//B3LYP/6–311+G(d,p) and MP4//B3LYP/6–311+G(d,p) levels. The coordination between Al2H3 entity and both C5(CH3)5 groups is ensured by strong electrostatic and orbital interactions. The orbital analysis of the interacting fragments shows that Al2H3 acceptor, which keeps its tribridged structure, implies the vacant ( \texta1¢ ) \left( {{\text{a}}_1^\prime } \right) and five antibonding (a2¢¢ a_2^{\prime \prime } , e′ and e″) molecular orbitals to interact with two orbitals mixtures, b1 and e" of the donors (C5Me5). When we take into account the solvent effect, the computation shows that 1 seems to be stable in condensed phase with a tribridged bond between the Al atoms [Cp*Al(μ-H)3AlCp*], whereas in the gas phase, the monobridged Cp*AlH(μ-H)AlHCp* 4 is slightly favored (4 kcal mol−1). We propose that 1 could be prepared thanks to Cp*Al (2) and Cp*AlH2 (3) reaction in acidic medium. The experimental treatment of this type of metallocenes would contribute to the development of the organometallic chemistry of 13th group elements.   相似文献   
76.
Recently, we reported potent and small-sized beta-secretase (BACE1) inhibitors KMI-570 and KMI-684 in which we replaced carboxylic acid groups at the P(1)(') position of KMI-420 and KMI-429, respectively, with tetrazole derivatives as carboxylic acid bioisosteres. These modifications improved significantly BACE1 inhibitory activity and chemical stability. In this study, the acidic tetrazole ring of the P(4) position of KMI-420 and KMI-570, respectively, was replaced with various hydrogen bond acceptor groups. We found BACE1 inhibitor KMI-574 that exhibited potent inhibitory activity in cultured cells as well as in vitro enzymatic assay.  相似文献   
77.
Aldehyde dehydrogenases are general detoxifying enzymes, but there are also isoenzymes that are involved in specific metabolic pathways in different organisms. Two of these enzymes are Escherichia coli lactaldehyde (ALD) and phenylacetaldehyde dehydrogenases (PAD), which participate in the metabolism of fucose and phenylalanine, respectively. These isozymes share some properties with the better characterized mammalian enzymes but have kinetic properties that are unique. It was possible to thread the sequences into the known ones for the mammalian isozymes to better understand some structural differences. Both isozymes were homotetramers, but PAD used both NAD+ and NADP+ but with a clear preference for NAD, while ALD used only NAD+. The rate-limiting step for PAD was hydride transfer as indicated by the primary isotopic effect and the absence of a pre-steady-state burst, something not previously found for tetrameric enzymes from other organisms where the rate-limiting step is related to both deacylation and coenzyme dissociation. In contrast, ALD had a pre-steady-state burst indicating that the rate-limiting step was located after the NADH formation, but the rate-limiting step was a combination of deacylation and coenzyme dissociation. Both enzymes possessed esterase activity that was stimulated by NADH; NAD+ stimulated the esterase activity of PAD but not of ALD. Finding enzymes that structurally are similar to the well-characterized mammalian enzymes but have a different rate-limiting step might serve as models to allow us to determine what regulates the rate-limiting step.  相似文献   
78.
Filtration performance of microporous ceramic supports   总被引:1,自引:0,他引:1  
The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 °C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 μm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).  相似文献   
79.
Alginates are natural polysaccharides that are extracted from brown seaweeds and widely used for their rheological properties. The central step in the extraction protocol used in the alginate industry is the alkaline extraction, which requires several hours. In this study, a significant decrease in alginate dynamic viscosity was observed after 2 h of alkaline treatment. Intrinsic viscosity and average molecular weight of alginates from alkaline extractions 1–4 h in duration were determined, indicating depolymerization of alginates: average molecular weight decreased significantly during the extraction, falling by a factor of 5 between 1 and 4 h of extraction. These results suggested that reducing extraction time could enable preserving the rheological properties of the extracted alginates.  相似文献   
80.
Although the structures of mammalian cytosolic and mitochondrial ALDH have been determined, several differences, mainly functional, between these two 70% identical isozymes remain unexplained. A major difference is the differential effect of Mg(2+) ions that inhibits the cytosolic and activates the mitochondrial isozyme. Here, we have investigated the effect of Mg(2+) ions on each individual kinetic step of ALDH1 and ALDH2. The metal ions were found not to affect either acylation or hydride transfer for either isozyme. The lack of a Mg(2+) ion effect on hydride transfer was further demonstrated with an E399Q mutant of ALDH1 whose rate-limiting step had been changed from NADH dissociation to hydride transfer. The other steps, however, were affected by Mg(2+) ions for both isozymes. The metal ions inhibited NADH dissociation, the rate-limiting step for ALDH1, and enhanced deacylation, the rate-limiting step for ALDH2. Our results indicated that, with both isozymes, Mg(2+) ions tightened the binding of NADH, and by binding to the coenzyme, they increased the nucleophilicity of the nucleophile Cys302. The inhibition of ALDH1 and activation of ALDH2 at pH 7.4 are due to their different rate-limiting steps. Mg(2+) ions affected similarly the NADH activation of the esterase reaction for both isozymes. In contrast, the metal ions affected only the NAD(+) activation of ALDH1. This latter finding and other features described here can be rationalized on the basis of the known three-dimensional structures of the isozymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号