全文获取类型
收费全文 | 449篇 |
免费 | 28篇 |
专业分类
477篇 |
出版年
2023年 | 4篇 |
2022年 | 8篇 |
2021年 | 10篇 |
2020年 | 5篇 |
2019年 | 14篇 |
2018年 | 12篇 |
2017年 | 9篇 |
2016年 | 13篇 |
2015年 | 21篇 |
2014年 | 28篇 |
2013年 | 37篇 |
2012年 | 25篇 |
2011年 | 27篇 |
2010年 | 27篇 |
2009年 | 22篇 |
2008年 | 26篇 |
2007年 | 26篇 |
2006年 | 14篇 |
2005年 | 16篇 |
2004年 | 17篇 |
2003年 | 15篇 |
2002年 | 11篇 |
2001年 | 13篇 |
2000年 | 18篇 |
1999年 | 8篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1974年 | 3篇 |
1973年 | 1篇 |
1969年 | 3篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1965年 | 1篇 |
1960年 | 1篇 |
1958年 | 1篇 |
1955年 | 1篇 |
1954年 | 1篇 |
1946年 | 1篇 |
排序方式: 共有477条查询结果,搜索用时 32 毫秒
71.
Parakkal Jovvian George Rajamanickam Anuradha Nathella Pavan Kumar Rathinam Sridhar Vaithilingam V. Banurekha Thomas B. Nutman Subash Babu 《PLoS pathogens》2014,10(9)
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB. 相似文献
72.
Pavan Umate 《Plant signaling & behavior》2011,6(3):335-338
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (Locus Annotation Nomenclature A* B* C* AT1G55020 lipoxygenase 1 (LOX1) LOX1 859 98044.4 5.2049 AT1G17420 lipoxygenase 3 (LOX3) LOX3 919 103725.1 8.0117 AT1G67560 lipoxygenase family protein LOX4 917 104514.6 8.0035 AT1G72520 lipoxygenase, putative LOX6 926 104813.1 7.5213 AT3G22400 lipoxygenase 5 (LOX5) LOX5 886 101058.8 6.6033 AT3G45140 lipoxygenase 2 (LOX2) LOX2 896 102044.7 5.3177