首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   17篇
  403篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   17篇
  2014年   17篇
  2013年   30篇
  2012年   19篇
  2011年   24篇
  2010年   20篇
  2009年   11篇
  2008年   17篇
  2007年   25篇
  2006年   13篇
  2005年   21篇
  2004年   17篇
  2003年   13篇
  2002年   17篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   1篇
  1984年   5篇
  1982年   2篇
  1981年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
181.
Variations in growth, above- and below-ground biomass and nutrient distribution were examined in five clones (G3, G48, 65/27, D121 and S7C1) of Populus deltoides grown under agrisilviculture system in sub-humid tropics of Central India. The monoclonal blocks were planted at 4x5 m in a randomized block design with three replications. Diameter at breast height (dbh) and tree height were consistently higher in clone 65/27 and lowest in clone S7C1. Mean annual increments (MAI) in dbh and height were 1.6 and 1.3 times higher in clone 65/27 compared to clone S7C1. Total biomass varied from 48.5 to 62.2 Mg ha(-1) in six-year-old clones. In rank order, the total biomass of clones was: 65/27>D121>G48>G3>S7C1. Stem wood accounted 60.4-68.9% to total biomass followed by coarse roots (12.2-18.9%), branches (12.3-15%), leaves (3.02-6.9%) and fine roots (1.5-2.7%). Root-shoot ratio ranged from 0.2 to 0.35. It was highest in clone G48 and lowest in clone S7C1. In six-year-old clones, total N ranged from 184.3 to 266.3 kg ha(-1), P from 16.8 to 31.1 kg ha(-1) and K from 81.9 to 128.7 kg ha(-1). Total N and P were highest in clone 65/27, while K in clone G48. Nutrients were lowest in clone S7C1. In general, maximum nutrients (N, P and K) were allocated to above-ground components (leaves>stem>branches) than below-ground components. Available N, P and K in the soil improved significantly after six years of planting. It was higher in 0-20 cm and decreased with soil depth. At 0-20 cm soil depth, N increased from 14.9% to 24.1%, P from 17.2% to 23.3% and K from 3.1% to 5.1% under different clones. The yield of both soybean and wheat reduced under poplar clones. Yield losses in soybean ranged from 10.1% to 33% and wheat from 15% to 30.3% under different clones. The management strategies for reducing tree-crop competition and nutrient export from the site under P. deltoides based agrisilviculture system for achieving sustainable production are discussed.  相似文献   
182.
Activating mutations of FGFRs1-3 cause craniosynostosis (CS), the premature fusion of cranial bones, in man and mouse. The mechanisms by which such mutations lead to CS have been variously ascribed to increased osteoblast proliferation, differentiation, and apoptosis, but it is not always clear how these disturbances relate to the process of suture fusion. We have reassessed coronal suture fusion in an Apert Fgfr2 (S252W) mouse model. We find that the critical event of CS is the early loss of basal sutural mesenchyme as the osteogenic fronts, expressing activated Fgfr2, unite to form a contiguous skeletogenic membrane. A mild increase in osteoprogenitor proliferation precedes but does not accompany this event, and apoptosis is insignificant. On the other hand, the more apical coronal suture initially forms appropriately but then undergoes fusion, albeit at a slower rate, accompanied by a significant decrease in osteoprogenitor proliferation, and increased osteoblast maturation. Apoptosis now accompanies fusion, but is restricted to bone fronts in contact with one another. We correlated these in vivo observations with the intrinsic effects of the activated Fgfr2 S252W mutation in primary osteoblasts in culture, which show an increased capacity for both proliferation and differentiation. Our studies suggest that the major determinant of Fgfr2-induced craniosynostosis is the failure to respond to signals that would halt the recruitment or the advancement of osteoprogenitor cells at the sites where sutures should normally form.  相似文献   
183.
The epidermal growth factor receptor (EGFR) family, consisting of four tyrosine kinase receptors, c-erbB1-4, seems to be influential in gliomagenesis. The aim of this study was to investigate EGFR gene amplification and expression of c-erbB1-4 receptor proteins in human anaplastic astrocytomas. Formalin-fixed and paraffin-embedded sections from 31 cases were investigated by standard immunohistochemical procedures for expression of c-erbB1-4 receptor proteins using commercial antibodies. EGFR gene amplification was studied by fluorescence in situ hybridization using paraffin-embedded tissues. Two monoclonal antibodies, NCL-EGFR-384 and NCL-EGFR, were used for EGFR detection and they displayed positive immunoreactivity in 97% and 71%, respectively. For c-erbB2 detection three monoclonal antibodies, CB11, 3B5, and 5A2, were applied and they displayed positive immunoreactivity in 45%, 100%, and 52%, respectively. Positive immunostaining for c-erbB3 and c-erbB4 was encountered in 97% and 74%, respectively. The EGFR gene was amplified in 9 out of 31 tumors (29%). After adjusting for age, Karnofsky performance status, and extent of surgical resection, Cox multiple regression analysis with overall survival as the dependent variable revealed that c-erbB2 overexpression detected by the monoclonal antibody clone CB11 was a statistically significant poor prognostic factor (P = 0.004). This study shows the convenience and feasibility of immunohistochemistry when determining the expression of receptor proteins in tissue sections of human astrocytomas. The synchronous overexpression of c-erbB1-4 proteins in anaplastic astrocytomas supports their role in the pathogenesis of these tumors. Further, c-erbB2 overexpression seems to predict aggressive behaviour.  相似文献   
184.

Background

Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW).

Methodology/Principal Findings

Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation).

Conclusions/Significance

Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.  相似文献   
185.
186.
In iron-limited medium, a siderophore producing soil isolate ofAzotobacter chroococcum showed a high level of hydroxamate with relatively low level of nitrogen fixation. Inclusion of iron in the medium resulted in increased nitrogen fixation with decreased hydroxamate production. Under shake culture conditions, the level of both hydroxamate and catechol type of siderophores decreased after 2 d of incubation in iron-deficient medium. However, under iron-sufficient conditions, both siderophore production and nitrogen fixation increased with time although the level of siderophore was quite low. A number of soil isolates and mutants ofA. chrococcum were tested for nitrogen fixation, hydroxamate and catechol type of siderophore production. Wide variation was observed in the siderophore level and nitrogen fixation in the cultures tested. Nitrogen fixation was higher in the iron-sufficient medium than in iron-limited one while hydroxamate yield was higher in iron-limited medium than in the iron-sufficient one in all the cultures. Inclusion of ammonium acetate in the medium induced catechol synthesis in more than 60% of the cultures.  相似文献   
187.
Coenzyme Q10 (CoQ10) is an industrially important molecule having nutraceutical and cosmeceutical applications. CoQ10 is mainly produced by microbial fermentation and the process demands the use of strains with high productivity and yields of CoQ10. During strain improvement program consisting of sequential induced mutagenesis, rational selection and screening process, a mutant strain UF16 was generated from Sporidiobolus johnsonii ATCC 20490 with 2.3-fold improvements in CoQ10 content. EMS and UV rays were used as mutagenic agents for generating UF16 and it was rationally selected based on atorvastatin resistance as well as survival at free radicals exposure. We investigated the genotypic and phenotypic changes in UF16 in order to differentiate it from wild type strain. Morphologically it was distinct due to reduced pigmentation of colony, reduced cell size and significant reduction in mycelial growth forms with abundance of yeast forms. At molecular level, UF16 was differentiated based on PCR fingerprinting method of RAPD as well as large and small-subunit rRNA gene sequences. Rapid molecular technique of RAPD analysis using six primers showed 34 % polymorphic fragments with mean genetic distance of 0.235. The partial sequences of rRNA-gene revealed few mutation sites on nucleotide base pairs. However, the mutations detected on rRNA gene of UF16 were less than 1 % of total base pairs and its sequence showed 99 % homology with the wild type strain. These mutations in UF16 could not be linked to phenotypic or genotypic changes on CoQ10 biosynthetic pathway that resulted in improved yield. Hence, investigating the mutations responsible for deregulation of CoQ10 pathway is essential to understand the cause of overproduction in UF16. Phylogenetic analysis based on RAPD bands and rRNA gene sequences coupled with morphological variations, exhibited the novelty of mutant UF16 having potential for improved CoQ10 production.  相似文献   
188.
Summary The fungal airspora of a large hospital in Delhi Metropolis was studied from May 1989 – April 1991, using Andersen Six Stage Volumetric Sampler and Burkard Personal Slide Sampler. Simultaneously, samples were also collected from outside the hospital to act as a control. Samplers were operated for 10 min. each time, at 10 - day intervals. Additional samples were also collected from different sections of 3 other hospitals. Some of the dominant forms encountered wereCladosporium spp.,Aspergillus flavus, Smut,Fusarium spp.,Aspergillus niger, Alternaria spp.,Penicillium citrinum, Aspergillus versicolor, andPenicillium oxalicum. Aspergillus flavus showed significantly high concentration inside hospital (n=66, x=53 CFU m–3, p<0.05) as compared to outside air. The peak period for fungi was observed to be from June – September. The spore concentration was much lower in hospital units receiving filtered air as compared to control environment, but in naturally ventilated hospitals the concentration was similar to that of outside air.  相似文献   
189.
A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles networks with bistable responses.  相似文献   
190.
Auxin signaling mediated by various auxin/indole‐3‐acetic acid (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) regulate lateral root (LR) development by controlling the expression of downstream genes. LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the SHORT INTERNODES/STYLISH (SHI/STY) family, was identified as an auxin‐inducible gene. The precise developmental role and molecular regulation of LRP1 in root development remain to be understood. Here we show that LRP1 is expressed in all stages of LR development, besides the primary root. The expression of LRP1 is regulated by histone deacetylation in an auxin‐dependent manner. Our genetic interaction studies showed that LRP1 acts downstream of auxin responsive Aux/IAAs‐ARFs modules during LR development. We showed that auxin‐mediated induction of LRP1 is lost in emerging LRs of slr‐1 and arf7arf19 mutants roots. NPA treatment studies showed that LRP1 acts after LR founder cell specification and asymmetric division during LR development. Overexpression of LRP1 (LRP1 OE) showed an increased number of LR primordia (LRP) at stages I, IV and V, resulting in reduced emerged LR density, which suggests that it is involved in LRP development. Interestingly, LRP1‐induced expression of YUC4, which is involved in auxin biosynthesis, contributes to the increased accumulation of endogenous auxin in LRP1 OE roots. LRP1 interacts with SHI, STY1, SRS3, SRS6 and SRS7 proteins of the SHI/STY family, indicating their possible redundant role during root development. Our results suggested that auxin and histone deacetylation affect LRP1 expression and it acts downstream of LR forming auxin response modules to negatively regulate LRP development by modulating auxin homeostasis in Arabidopsis thaliana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号