首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1096篇
  免费   115篇
  1211篇
  2019年   11篇
  2018年   9篇
  2016年   13篇
  2015年   24篇
  2014年   26篇
  2013年   36篇
  2012年   39篇
  2011年   40篇
  2010年   25篇
  2009年   33篇
  2008年   34篇
  2007年   34篇
  2006年   32篇
  2005年   33篇
  2004年   31篇
  2003年   36篇
  2002年   35篇
  2001年   43篇
  2000年   41篇
  1999年   30篇
  1997年   13篇
  1996年   12篇
  1995年   11篇
  1993年   9篇
  1992年   29篇
  1991年   24篇
  1990年   25篇
  1989年   26篇
  1988年   18篇
  1987年   17篇
  1986年   31篇
  1985年   18篇
  1984年   29篇
  1983年   17篇
  1982年   25篇
  1981年   18篇
  1980年   19篇
  1979年   35篇
  1978年   20篇
  1977年   12篇
  1976年   18篇
  1975年   13篇
  1974年   21篇
  1973年   16篇
  1972年   14篇
  1971年   10篇
  1969年   16篇
  1968年   14篇
  1967年   13篇
  1966年   12篇
排序方式: 共有1211条查询结果,搜索用时 15 毫秒
71.
72.
The CC-chemokine receptor CCR5 mediates fusion and entry of the most commonly transmitted human immunodeficiency virus type 1 (HIV-1) strains. We have isolated six new anti-CCR5 murine monoclonal antibodies (MAbs), designated PA8, PA9, PA10, PA11, PA12, and PA14. A panel of CCR5 alanine point mutants was used to map the epitopes of these MAbs and the previously described MAb 2D7 to specific amino acid residues in the N terminus and/or second extracellular loop regions of CCR5. This structural information was correlated with the MAbs' abilities to inhibit (i) HIV-1 entry, (ii) HIV-1 envelope glycoprotein-mediated membrane fusion, (iii) gp120 binding to CCR5, and (iv) CC-chemokine activity. Surprisingly, there was no correlation between the ability of a MAb to inhibit HIV-1 fusion-entry and its ability to inhibit either the binding of a gp120-soluble CD4 complex to CCR5 or CC-chemokine activity. MAbs PA9 to PA12, whose epitopes include residues in the CCR5 N terminus, strongly inhibited gp120 binding but only moderately inhibited HIV-1 fusion and entry and had no effect on RANTES-induced calcium mobilization. MAbs PA14 and 2D7, the most potent inhibitors of HIV-1 entry and fusion, were less effective at inhibiting gp120 binding and were variably potent at inhibiting RANTES-induced signaling. With respect to inhibiting HIV-1 entry and fusion, PA12 but not PA14 was potently synergistic when used in combination with 2D7, RANTES, and CD4-immunoglobulin G2, which inhibits HIV-1 attachment. The data support a model wherein HIV-1 entry occurs in three stages: receptor (CD4) binding, coreceptor (CCR5) binding, and coreceptor-mediated membrane fusion. The antibodies described will be useful for further dissecting these events.  相似文献   
73.
74.
75.
76.
77.
Medulloblastoma is a cerebellar tumor that can arise through aberrant activation of Sonic hedgehog (Shh) signaling, which normally regulates cerebellar granule cell proliferation. Mutations of the Shh receptor PATCHED (PTCH) are associated with medulloblastomas, which have not been found to have loss of PTCH heterozygosity. We address whether patched (Ptc) heterozygosity fundamentally alters granule cell differentiation and contributes to tumorigenesis by increasing proliferation and/or decreasing apoptosis in Ptc+/- mice. Our data show that postnatal Ptc+/- mouse granule cell precursor growth is not globally altered. However, many older Ptc+/- mice display abnormal cerebellar regions containing persistently proliferating granule cell precursors. Since fewer Ptc+/- mice form medulloblastomas, these granule cell rests represent a developmentally disrupted, but uncommitted stage of tumorigenesis. Although Ptc+/- mouse medulloblastomas express neurodevelopmental genes, they diverge from granule cell differentiation in their discordant coexpression of postmitotic markers despite their ongoing growth. Like human medulloblastomas, mouse tumors with reduced levels of the neurotrophin-3 receptor, trkC/Ntrk3, display decreased apoptosis in vivo, illustrating the role of TrkC in regulating tumor cell survival. These results indicate that Ptc heterozygosity contributes to tumorigenesis by predisposing a subset of granule cell precursors to the formation of proliferative rests and subsequent dysregulation of developmental gene expression.  相似文献   
78.
We report on the presence of high proportions of arachidonic acid (20:4n-6) and eicosapentaenoic acid (20:5n-3) in the tissue lipids of adult fireflies, Photinus pyralis. Arachidonic acid typically occurs in very small proportions in phospholipids (PLs) of terrestrial insects, ranging from no more than traces to less than 1% of PL fatty acids, while 20:5n-3 is often missing entirely from insect lipids. Contrarily, 20:4n-6 made up approximately 21% of the PL fatty acids prepared from whole males and females, and from heads and thoraces prepared from males. Proportions of 20:4n-6 associated with PLs varied among tissues, including approximately 8% for male gut epithelia, 13% for testes, and approximately 25% for light organs and body fat from males. Substantial proportions of 20:5n-3 were also associated with PLs prepared from male firefly tissues, including 5% for body fat and 8% for light organs. Because 20:4n-6 and 20:5n-3 are precursors for biosynthesis of prostaglandins and other eicosanoids, we considered the possibility that firefly tissues might produce eicosanoids at exceptionally high rates. Preliminary experiments indicated otherwise. Hence, fireflies are peculiar among terrestrial insects with respect to maintaining high proportions of PL 20:4n-6 and 20:5n-3.  相似文献   
79.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP sensitive Cl- channel that is defective in cystic fibrosis (CF). The most frequent mutation, namely deltaF508-CFTR, accounts for 66% of CF. Here we show that cAMP-activation of CFTR occurs via at least two distinct pathways: activation of CFTR molecules already present in the plasma membrane and protein kinase A (PKA)-mediated vesicular transport of new CFTR molecules to the plasma membrane and functional insertion into the membrane. We investigated the mechanisms that are responsible for these activation pathways using the Xenopus laevis oocytes expression system. We expressed CFTR and recorded continuously membrane current (Im), conductance (Gm) and capacitance (Cm), which is a direct measure of membrane surface area. Expression of CFTR alone did not change the plasma membrane surface area. However, activation of CFTR with cAMP increased Im, Gm and Cm while deltaF508-CFTR-expressing oocytes showed no response on cAMP. Inhibition of protein kinase A or buffering intracellular Ca2+ abolished the cAMP-induced increase in Cm while increases of Im and Gm were still present. ATP or the xanthine derivative 8-cyclopentyl-1,3-dipropylxanthine (CPX) did not further activate CFTR. Insertion of pre-formed CFTR into the plasma membrane could be prevented by compounds that interfere with intracellular transport mechanisms such as primaquine, brefeldin A, nocodazole. From these data we conclude that cAMP activates CFTR by at least two distinct pathways: activation of CFTR already present in the plasma membrane and exocytotic delivery of new CFTR molecules to the oocyte membrane and functional insertion into it.  相似文献   
80.
Huang Y  Park YC  Rich RL  Segal D  Myszka DG  Wu H 《Cell》2001,104(5):781-790
The inhibitor of apoptosis proteins (IAPs) represent the only endogenous caspase inhibitors and are characterized by the presence of baculoviral IAP repeats (BIRs). Here, we report the crystal structure of the complex between human caspase-7 and XIAP (BIR2 and the proceeding linker). The structure surprisingly reveals that the linker is the only contacting element for the caspase, while the BIR2 domain is invisible in the crystal. The linker interacts with and blocks the substrate groove of the caspase in a backward fashion, distinct from substrate recognition. Structural analyses suggest that the linker is the energetic and specificity determinant of the interaction. Further biochemical characterizations clearly establish that the linker harbors the major energetic determinant, while the BIR2 domain serves as a regulatory element for caspase binding and Smac neutralization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号