首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   3篇
  国内免费   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   12篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
排序方式: 共有91条查询结果,搜索用时 62 毫秒
51.
To study positioning of the polypeptide release factor eRF1 toward a stop signal in the ribosomal decoding site, we applied photoactivatable mRNA analogs, derivatives of oligoribonucleotides. The human eRF1 peptides cross-linked to these short mRNAs were identified. Cross-linkers on the guanines at the second, third, and fourth stop signal positions modified fragment 31–33, and to lesser extent amino acids within region 121–131 (the “YxCxxxF loop”) in the N domain. Hence, both regions are involved in the recognition of the purines. A cross-linker at the first uridine of the stop codon modifies Val66 near the NIKS loop (positions 61–64), and this region is important for recognition of the first uridine of stop codons. Since the N domain distinct regions of eRF1 are involved in a stop-codon decoding, the eRF1 decoding site is discontinuous and is not of “protein anticodon” type. By molecular modeling, the eRF1 molecule can be fitted to the A site proximal to the P-site-bound tRNA and to a stop codon in mRNA via a large conformational change to one of its three domains. In the simulated eRF1 conformation, the YxCxxxF motif and positions 31–33 are very close to a stop codon, which becomes also proximal to several parts of the C domain. Thus, in the A-site-bound state, the eRF1 conformation significantly differs from those in crystals and solution. The model suggested for eRF1 conformation in the ribosomal A site and cross-linking data are compatible.  相似文献   
52.
We mutagenized male BTBR mice with N-ethyl-N-nitrosourea and screened 1315 of their G3 offspring for airway hyperresponsiveness. A phenovariant G3 mouse with exaggerated methacholine bronchoconstrictor response was identified and his progeny bred in a nonspecific-pathogen-free (SPF) facility where sentinels tested positive for minute virus of mice and mouse parvovirus and where softwood bedding was used. The mutant phenotype was inherited through G11 as a single autosomal semidominant mutation with marked gender restriction, with males exhibiting almost full penetrance and very few females phenotypically abnormal. Between G11 and G12, facility infection eradication was undertaken and bedding was changed to hardwood. We could no longer detect airway hyperresponsiveness in more than 37 G12 offspring of 26 hyperresponsive G11 males. Also, we could not identify the mutant phenotype among offspring of hyperresponsive G8–G10 sires rederived into an SPF facility despite 21 attempts. These two observations suggest that both genetic and environmental factors were needed for phenotype expression. We suspect that rederivation into an SPF facility or altered exposure to pathogens or other unidentified substances modified environmental interactions with the mutant allele, and so resulted in disappearance of the hyperresponsive phenotype. Our experience suggests that future searches for genes that confer susceptibility for airway hyperresponsiveness might not be able to identify some genes that confer susceptibility if the searches are performed in SPF facilities. Experimenters are advised to arrange for multigeneration constancy of mouse care in order to clone mutant genes. Indeed, we were not able to map the mutation before losing the phenotype.  相似文献   
53.
This study is centred upon an important biological problem concerning the structural organization of mammalian ribosomes that cannot be studied by X-ray analysis because 80S ribosome crystals are still unavailable. Here, positioning of the mRNA on 80S ribosomes was studied using mRNA analogues containing the perfluorophenylazide cross-linker on either the guanosine or an uridine residue. The modi-fied nucleotides were directed to positions from −9 to +6 with respect to the first nucleotide of the P site bound codon by a tRNA cognate to the triplet targeted to the P site. Upon mild UV-irradiation, the modified nucleotides at positions +4 to +6 cross-linked to protein S15 and 18S rRNA nucleotides A1823–A1825. In addition, modified guanosines in positions +5 and +6 also cross-linked to G626, and in position +1 to G1702. Cross-linking from the upstream positions was mainly to protein S26 that has no prokaryotic homologues. These findings indicate that the tail of mammalian S15 comes closer to the decoding site than that of its prokaryotic homologue S19, and that the environments of the upstream part of mRNA on 80S and 70S ribosomes differ. On the other hand, the results confirm the widely accepted idea regarding the conserved nature of the decoding site of the small subunit rRNA.  相似文献   
54.
Positioning of the mRNA codon towards the 18S ribosomal RNA in the A site of human 80S ribosomes has been studied applying short mRNA analogs containing either the stop codon UAA or the sense codon UCA with a perfluoroaryl azide group at the uridine residue. Bound to the ribosomal A site, a modified codon crosslinks exclusively to the 40S subunits under mild UV irradiation. This result is inconsistent with the hypothesis [Ivanov et al. (2001) RNA 7, 1683-1692] which requires direct contact between the large rRNA and the stop codon of the mRNA as recognition step at translation termination. Both sense and stop codons crosslink to the same A1823/A1824 invariant dinucleotide in helix 44 of 18S rRNA. The data point to the resemblance between the ternary complexes formed at elongation (sense codon.aminoacyl-tRNA.AA dinucleotide of 18S rRNA) and termination (stop codon.eRF1.AA dinucleotide of 18S rRNA) steps of protein synthesis and support the view that eRF1 may be considered as a functional mimic of aminoacyl-tRNA.  相似文献   
55.
To study positioning of the mRNA stop signal with respect to polypeptide chain release factors (RFs) and ribosomal components within human 80S ribosomes, photoreactive mRNA analogs were applied. Derivatives of the UUCUAAA heptaribonucleotide containing the UUC codon for Phe and the stop signal UAAA, which bore a perfluoroaryl azido group at either the fourth nucleotide or the 3'-terminal phosphate, were synthesized. The UUC codon was directed to the ribosomal P site by the cognate tRNA(Phe), targeting the UAA stop codon to the A site. Mild UV irradiation of the ternary complexes consisting of the 80S ribosome, the mRNA analog and tRNA resulted in tRNA-dependent crosslinking of the mRNA analogs to the 40S ribosomal proteins and the 18S rRNA. mRNA analogs with the photoreactive group at the fourth uridine (the first base of the stop codon) crosslinked mainly to protein S15 (and much less to S2). For the 3'-modified mRNA analog, the major crosslinking target was protein S2, while protein S15 was much less crosslinked. Crosslinking of eukaryotic (e) RF1 was entirely dependent on the presence of a stop signal in the mRNA analog. eRF3 in the presence of eRF1 did not crosslink, but decreased the yield of eRF1 crosslinking. We conclude that (i) proteins S15 and S2 of the 40S ribosomal subunit are located near the A site-bound codon; (ii) eRF1 can induce spatial rearrangement of the 80S ribosome leading to movement of protein L4 of the 60S ribosomal subunit closer to the codon located at the A site; (iii) within the 80S ribosome, eRF3 in the presence of eRF1 does not contact the stop codon at the A site and is probably located mostly (if not entirely) on the 60S subunit.  相似文献   
56.
Spatial variation in parasitic infections is common, and has the potential to drive population divergence and the reproductive isolation of hosts. However, despite support from theory and model laboratory systems, little strong evidence has been forthcoming from the wild. Here, we show that parasites are likely to cause reproductive isolation in the adaptive radiation of three-spined stickleback. Adjacent wild populations on the Scottish island of North Uist differ greatly and consistently in the occurrence of different parasites that have substantial effects on fitness. Laboratory-reared fish are more resistant to experimental infection by parasite species from their own population. Furthermore, hybrid backcrosses between the host populations are more resistant to parasites from the parental population to which they are more closely related. These patterns provide strong evidence that parasites can cause ecological speciation, by contributing to selection against migrants and ecologically dependent postmating isolation.  相似文献   
57.
Hybrid drugs featuring two or more potentially bioactive pharmacophores have been recognized as advanced and superior chemical entities to simultaneously modulate multiple drug targets of multifactorial diseases, thus overcoming the severe side effects associated with a single drug molecule. The selection of these chemical moieties to produce hybrid structures with druggable properties is generally facilitated by the observed and/or anticipated synergistic pharmacological activities of the individual molecules. In this perspective, coumarin template has extensively been studied in pursuit of structurally diverse leads for drug development due to high affinity and specificity to different molecular targets. This review highlights the most commonly exploited approaches conceptualizing the design and construction of hybrid molecules by coupling two or more individual fragments with or without an appropriate linker. In addition to the design strategies, this review also summarizes and reflects on the therapeutic potential of these hybrid molecules for diverse enzyme inhibitory action as well as their observed structure-activity relationship (SAR). Several key features of the synthesized hybrid structures that assert a profound impact on the inhibitory function have also been discussed alongside computational investigations, inhibitor molecular diversity and selectivity toward multiple drug targets. Finally, these drug discovery and development efforts should serve as a handy reference aiming to provide a useful platform for the exploration of new coumarin-based compounds with enhanced enzyme inhibitory profile.  相似文献   
58.
Understanding the structural modification experienced by the Mn4CaO5 oxygen‐evolving complex of photosystem II along the Kok‐Joliot's cycle has been a challenge for both theory and experiments since many decades. In particular, differential infrared spectroscopy was extensively used to probe the surroundings of the reaction center, to catch spectral changes between different S‐states along the catalytic cycle. Because of the complexity of the signals, only a limited quantity of identified peaks have been assigned so far, also because of the difficulty of a direct comparison with theoretical calculations. In the present work, we critically reconsider the comparison between differential vibrational spectroscopy and theoretical calculations performed on the structural models of the photosystem II active site and an inorganic structural mimic. Several factors are currently limiting the reliability of a quantitative comparison, such as intrinsic errors associated to theoretical methods, and most of all, the uncertainty attributed to the lack of knowledge about the localization of the underlying structural changes. Critical points in this comparison are extensively discussed. Comparing several computational data of differential S2/S1 infrared spectroscopy, we have identified weak and strong points in their interpretation when compared with experimental spectra.  相似文献   
59.
Plant roots significantly influence soil microbial diversity, and soil microorganisms play significant roles in both natural and agricultural ecosystems. Although the genetically modified (GM) crops with enhanced insect and herbicide resistance are thought to have unmatched yield and stress resistance advantages, thorough and in-depth case studies still need to be carried out in a real-world setting due to the potential effects of GM plants on soil microbial communities. In this study, three treatments were used: a recipient soybean variety Jack, a triple transgenic soybean line JD321, and the glyphosate-treated JD321 (JD321G). Three sampling stages (flowering, seed filling and maturing), as well as three host niches of soybean rhizosphere [intact roots (RT), rhizospheric soil (RS) and surrounding soil (SS)] were established. In comparison to Jack, the rhizospheric soil of JD321G had higher urease activity and lower nitrite reductase at the flowering stage. Different treatments and different sampling stages existed no significant effects on the compositions of microbial communities at different taxonomic levels. However, at the genus level, the relative abundance of three plant growth-promoting fungal genera (i.e. Mortierella, Chaetomium and Pseudombrophila) increased while endophytic bacteria Chryseobacterium and pathogenic bacteria Streptomyces decreased from the inside to the outside of the roots (i.e. RT → RS → SS). Moreover, two bacterial genera, Bradyrhizobium and Ensifer were more abundant in RT than in RS and SS, as well as three species, Agrobacterium radiobacter, Ensifer fredii and Ensifer meliloti, which are closely related to nitrogen-fixation. Furthermore, five clusters of orthologous groups (COGs) associated to nitrogen-fixation genes were higher in RT than in RS, whereas only one COG annotated as dinitrogenase iron-molybdenum cofactor biosynthesis protein was lower. Overall, the results imply that the rhizosphere host niches throughout the soil–plant continuum largely control the composition and function of the root-associated microbiome of triple transgenic soybean.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号