首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8248篇
  免费   526篇
  国内免费   3篇
  8777篇
  2023年   79篇
  2022年   113篇
  2021年   198篇
  2020年   158篇
  2019年   177篇
  2018年   222篇
  2017年   200篇
  2016年   343篇
  2015年   427篇
  2014年   475篇
  2013年   555篇
  2012年   747篇
  2011年   631篇
  2010年   446篇
  2009年   391篇
  2008年   495篇
  2007年   492篇
  2006年   424篇
  2005年   355篇
  2004年   333篇
  2003年   302篇
  2002年   253篇
  2001年   73篇
  2000年   55篇
  1999年   58篇
  1998年   74篇
  1997年   51篇
  1996年   55篇
  1995年   60篇
  1994年   49篇
  1993年   38篇
  1992年   36篇
  1991年   30篇
  1990年   17篇
  1989年   23篇
  1988年   28篇
  1987年   15篇
  1986年   19篇
  1985年   21篇
  1984年   27篇
  1983年   17篇
  1982年   16篇
  1981年   29篇
  1980年   20篇
  1979年   20篇
  1978年   16篇
  1976年   13篇
  1974年   17篇
  1973年   17篇
  1968年   10篇
排序方式: 共有8777条查询结果,搜索用时 0 毫秒
71.
The parasitic filarioid Onchocerca lupi causes ocular disease characterized by conjunctivitis and nodular lesions. This nematode was first described in 1967 in a wolf from Georgia, and since then cases of infection from dogs and cats with ocular onchocercosis and sporadically from humans also with subcutaneous and cervical lesions caused by O. lupi have been reported from the Middle East, Europe, and North America. Due to its zoonotic potential, this parasitic infection has gained attention in the past 20 years. Phylogenetic studies have highlighted the recent divergence of O. lupi from other Onchocerca spp. and the importance of domestication in the evolutionary history of this worm. Moreover, the finding of an O. lupi genotype associated with subclinical and mild infection in the Iberian Peninsula, raises important questions about the pathogenicity of this presently enigmatic parasite.  相似文献   
72.
J C Fernando  B Hoskins  I K Ho 《Life sciences》1986,39(23):2169-2176
The role of brain dopamine (DA) in the enhancement of muscarinic antagonist-induced hyperactivity was investigated. The effects of atropine and scopolamine on the concentrations of DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), following DFP administration were determined. In control animals, atropine and scopolamine decreased the concentration of DA and increased the ratios of DOPAC/DA and HVA/DA in the striatum, but not in the N. accumbens - T. olfactorium (mesolimbic) area. Following a single dose of DFP, the two antimuscarinic drugs caused decreases of DA and further increases of the above ratios in both brain regions. However, following repeated DFP treatment for 2 weeks, these antimuscarinic drug-induced changes were observed only in the mesolimbic area, but not in the striatum. It is suggested that an increased DA turnover, indicated by elevated DOPAC/DA and HVA/DA ratios, underlies the muscarinic antagonist-induced hyperactivity. The well-known occurrence of muscarinic receptor down-regulation after DFP administration, could be responsible for the enhancement of the actions of muscarinic antagonists in DFP-treated animals. The observed differential effect on DA turnover in the two broad areas may involve both muscarinic and DA receptors.  相似文献   
73.
The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non‐specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below‐ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio‐temporal changes in the composition and structure of above‐ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run‐off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short‐distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.  相似文献   
74.
75.
ObjectiveRisk factors for differentiated thyroid carcinoma (DTC) are poorly understood, but serum TSH levels, thyroid nodularity, and presence of autoimmunity are well-recognized factors that modulate DTC prevalence. TSH stimulates proliferation of both normal and neoplastic follicular cells. Consequently, thyroid-stimulating immunoglobulins (TSI), because of its TSH-like action, should induce DTC progression in patients with Graves’ disease (GD). The study objective was to compare the prevalence of incidental DTC in patients undergoing thyroidectomy for benign thyroid disease.MethodsThe pathology reports of 372 patients with preoperative diagnosis of euthyroid multinodular goiter (EMG) or hyperthyroidism were reviewed. Scintigraphy results and serum TSI levels were used to diagnosed either GD or hyperactive MG (HMG) to hyperthyroid subjects. Prevalence of DTC in each category was calculated using a Chi-square test.ResultsEMG, GD, and HMG were diagnosed in 221, 125, and 26 patients. There were 58 DTCs, distributed as follows [n (%)]: EMG, 49 (22.2%); GD, 8 (6.4%), and HMG, 1 (3.8%). Difference in prevalence of incidental DTC between the groups was statistically significant (p < 0.001). After adjustment for age, patients with EMG had a greater DTC prevalence than GD patients, with an OR of 4.17 (p < 0.001). Tumor size (mm, mean ± SD) was 6.92 ± 11.26, 1.97 ± 1.85, and 9.0 for EMG, GD and HMG respectively (p = 0.017).ConclusionsIncidental DTC was less prevalent in GD as compared to EMG irrespective of age. This finding may suggest a predisposition to develop DTC in patients with thyroid nodular disease and/or a potential effect of autoimmunity to protect against development of neoplastic disease.  相似文献   
76.
Vaccine adjuvants are substances associated with antigens that are fundamental to the formation of an intense, durable, and fast immune response. In this context, the use of vaccine adjuvants to generate an effective cellular immune response is crucial for the design and development of vaccines against visceral leishmaniasis. The objective of this study was to evaluate innate inflammatory response induced by the vaccine adjuvants saponin (SAP), incomplete Freund's adjuvant (IFA), and monophosphoryl lipid A (MPL). After a single dose of adjuvant was injected into the skin of mice, we analyzed inflammatory reaction, selective cell migration, and cytokine production at the injection site, and inflammatory cell influx in the peripheral blood. We found that all vaccine adjuvants were able to promote cell recruitment to the site without tissue damage. In addition, they induced selective migration of neutrophils, macrophages, and lymphocytes. The influx of neutrophils was notable at 12 h in all groups, but at other time points it was most evident after inoculation with SAP. With regard to cytokines, the SAP led to production of interleukin (IL)-2, IL-6, and IL-4. IFA promoted production of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, IL-17, IL-4, and IL-10. We also observed that MPL induced high production of IL-2, TNF-α, and IFN-γ, in addition to IL-6, IL-17, and IL-10. In peripheral blood, values of certain cell populations in the local response changed after stimulation. Our data demonstrate that the three vaccine adjuvants stimulate the early events of innate immune response at the injection site, suggesting their ability to increase the immunogenicity of co-administered antigens. Moreover, this work provides relevant information about elements of innate and acquired immune response induced by vaccine adjuvants administered alone.  相似文献   
77.
The regulatory role that mitochondria play in cell dysfunction and cell-death pathways involves the concept of a complex and multisite regulation of cellular respiration and energy production signaled by cellular and intercellular messengers. Hence, the role of nitric oxide, as a physiological regulator acting directly on the mitochondrial respiratory chain acquires further relevance. This article provides a survey of the major regulatory roles of nitric oxide on mitochondrial functions as an expression of two major metabolic pathways for nitric oxide consumption: a reductive pathway, involving mitochondrial ubiquinol and yielding nitroxyl anion and an oxidative pathway involving superoxide anion and yielding peroxynitrite. The modulation of the decay pathways for nitrogen-and oxygen-centered radicals is further analyzed as a function of the redox transitions of mitochondrial ubiquinol. The interplay among these redox processes and its implications for mitochondrial function is discussed in terms of the mitochondrial steady-state levels (and gradients) of nitric oxide and superoxide anion.  相似文献   
78.
Contrary to reports from elsewhere, Streptococcus faecalis or Bacillus alvei did not cause European foulbrood in bee larvae also inoculated with sacbrood virus. The larvae died of sacbrood, by which time S. faecalis had mostly disappeared, although B. alvei multiplied saprophytically, as in European foulbrood, in some of the remains. Larvae that died of sacbrood already contained much sacbrood virus before they were sealed in their cells, when they appeared unaffected by the virus, but when they are most likely to die of European foulbrood, which is caused by Streptococcus pluton, often accompanied by secondary invaders, such as S. faecalis. Therefore, larvae killed by European foulbrood can be expected sometimes to contain much sacbrood virus, particularly as this virus is common.  相似文献   
79.

Aims

Sickle cell disease (SCD) pathogenesis leads to recurrent vaso-occlusive and hemolytic processes, causing numerous clinical complications including renal damage. As vasoconstrictive mechanisms may be enhanced in SCD, due to endothelial dysfunction and vasoactive protein production, we aimed to determine whether the expression of proteins of the renin–angiotensin system (RAS) may be altered in an animal model of SCD.

Main methods

Plasma angiotensin II (Ang II) was measured in C57BL/6 (WT) mice and mice with SCD by ELISA, while quantitative PCR was used to compare the expressions of the genes encoding the angiotensin-II-receptors 1 and 2 (AT1R and AT2R) and the angiotensin-converting enzymes (ACE1 and ACE2) in the kidneys, hearts, livers and brains of mice. The effects of hydroxyurea (HU; 50–75 mg/kg/day, 4 weeks) treatment on these parameters were also determined.

Key findings

Plasma Ang II was significantly diminished in SCD mice, compared with WT mice, in association with decreased AT1R and ACE1 expressions in SCD mice kidneys. Treatment of SCD mice with HU reduced leukocyte and platelet counts and increased plasma Ang II to levels similar to those of WT mice. HU also increased AT1R and ACE2 gene expression in the kidney and heart.

Significance

Results indicate an imbalanced RAS in an SCD mouse model; HU therapy may be able to restore some RAS parameters in these mice. Further investigations regarding Ang II production and the RAS in human SCD may be warranted, as such changes may reflect or contribute to renal damage and alterations in blood pressure.  相似文献   
80.
Glutamate and GABA are the major excitatory and inhibitory neurotransmitters in the CNS. In the retina, it has been shown that glutamate and aspartate and their agonists kainate and NMDA promote the release of GABA. In the chick retina, at embryonic day 14 (E14), glutamate and kainate were able to induce the release of GABA from amacrine and horizontal cells as detected by GABA-immunoreactivity. NMDA also induced GABA release restricted to amacrine cell population and its projections to the inner plexiform layer (E14 and E18). Although aspartate reduced GABA immunoreactivity, specifically in amacrine cells of E18 retinas, it was not efficient to promote GABA release from retinas at E14. As observed in differentiated retinas, dopamine inhibited the GABA release promoted by NMDA and aspartate but not by kainate. Our data show that different retinal sites respond to distinct EAAs via different receptor systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号