首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   56篇
  国内免费   1篇
  2024年   1篇
  2023年   11篇
  2022年   35篇
  2021年   46篇
  2020年   57篇
  2019年   103篇
  2018年   66篇
  2017年   57篇
  2016年   53篇
  2015年   53篇
  2014年   52篇
  2013年   90篇
  2012年   81篇
  2011年   57篇
  2010年   44篇
  2009年   39篇
  2008年   42篇
  2007年   41篇
  2006年   22篇
  2005年   23篇
  2004年   27篇
  2003年   11篇
  2002年   13篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有1030条查询结果,搜索用时 15 毫秒
171.
Gametes alter the oviductal secretory proteome   总被引:1,自引:0,他引:1  
The mammalian oviduct provides an optimal environment for the maturation of gametes, fertilization, and early embryonic development. Secretory cells lining the lumen of the mammalian oviduct synthesize and secrete proteins that have been shown to interact with and influence the activities of gametes and embryos. We hypothesized that the presence of gametes in the oviduct alters the oviductal secretory proteomic profile. We used a combination of two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry to identify oviductal protein secretions that were altered in response to the presence of gametes in the oviduct. The oviductal response to spermatozoa was different from its response to oocytes as verified by Western blotting. The presence of spermatozoa or oocytes in the oviduct altered the secretion of specific proteins. Most of these proteins are known to have an influence on gamete maturation, viability, and function, and there is evidence to suggest these proteins may prepare the oviductal environment for arrival of the zygote. Our findings suggest the presence of a gamete recognition system within the oviduct capable of distinguishing between spermatozoa and oocytes.  相似文献   
172.
173.
Three new spider species are described from Iran: Anemesia koponeni sp. n. (♂, Cyrtaucheniidae); Raveniola mazandaranica sp. n. (♂, Nemesiidae) and Sahastata sinuspersica sp. n. (♀, Filistatidae). Cyrtaucheniidae and Sahastata Benoit, 1968 are reported from Iran for the fisrt time.  相似文献   
174.
175.
Cretaceous carbonate successions of the Bangestan Group, such as the Sarvak and Ilam formations, are among the most prolific hydrocarbon reserves of the Middle East. However, relatively little is known about their detailed palaeontology and biostratigraphy. Moreover, due to lithological similarity of these carbonate formations recognition of their boundaries in subsurface studies is problematic. To investigate these units, biostratigraphic analyses were carried out on nearly 1100 m of cores, including core plug samples and thin sections prepared from five giant and supergiant oilfields in the northern and southern Dezful Embayment, SW Iran. Accordingly, 59 species of foraminifera (assigned to 43 genera) as well as 11 species of non-foraminifera (10 genera) were recognized. As a result, three biozones were identified, which in stratigraphic order are: Nezzazata-Alveolinids Assemblage Zone; Moncharmontia apenninica-Nezzazatinella-Dicyclina Assemblage Zone; and Rotalia skourensis-algae Assemblage Zone. These are compared with the Wynd's (1965) biozonation scheme, previously introduced in the Zagros area, and a revised scheme is presented. Accordingly, a Cenomanian–Turonian age and a Coniacian–Campanian age are envisaged for the Upper Sarvak and Ilam formations, respectively. In our new biostratigraphic scheme, the Sarvak–Ilam formations boundary is considered to be located above the Moncharmontia apenninica-Nezzazatinella-Dicyclina Assemblage Zone (equivalent of Valvulammina-Dicyclina Assemblage Zone of Wynd, 1965), that is Turonian in age. This zone is bounded by two palaeoexposure surfaces, which correspond approximately to the C–T boundary transitional interval and a post-Turonian, which can be possibly assigned to the Coniacian. Significant sedimentological features of these disconformities include bauxitic–lateritic horizons, karstified profiles and solution-collapsed breccias. Geochemical signatures of these meteorically altered surfaces are also considered to calibrate biofacies and biozones. Finally, we compared our new biozonation scheme with other studies in neighboring areas of SW Iran and the Middle East.  相似文献   
176.
Background:Prostate cancer (PC) is one of the most abundant cancers among men, and In Iran, has been responsible for 6% of all deaths from cancer in men. NUF2 and GMNN genes are considered as loci of susceptibility to tumorigenesis in humans. Alterations in expression of these genes have been reported in various malignancies. The aim of our study was to test whether different NUF2 and GMNN expression levels are associated with PC incidence and hence, might be considered as new molecular tools for PC screening.Methods:Biopsy samples from 40 PC patients and 41 healthy Iranian men were used to determine the relative gene expression. After RNA extraction and cDNA synthesis, samples were analyzed using TaqMan Quantitative Real time PCR. Patients’ background information, included smoking habits and family histories of PC, were recorded. Stages and grades of their PC were classified by the TNM tumor, node, metastasis (TMN) staging system based on standard guidelines.Results:NUF2 expression did not significantly differ between the groups, while GMNN expression was significantly greater in the PC specimens than in the controls.Conclusion:Regarding the significant role of GMNN in various tumor phenotypes, and its importance in PC progression, the alteration in GMNN expression in PC samples vs. controls indicate that the genetic profiling of this cancer might be considered to personalize therapy for each patient in the future.Key Words: Family history, Geminin (GMNN), Tumor staging, NUF2, Prostate cancer  相似文献   
177.
178.
179.
Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.  相似文献   
180.
Ashori A 《Bioresource technology》2008,99(11):4661-4667
Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号