首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   55篇
  国内免费   1篇
  1024篇
  2024年   1篇
  2023年   11篇
  2022年   40篇
  2021年   46篇
  2020年   57篇
  2019年   103篇
  2018年   66篇
  2017年   57篇
  2016年   52篇
  2015年   53篇
  2014年   49篇
  2013年   89篇
  2012年   79篇
  2011年   55篇
  2010年   44篇
  2009年   39篇
  2008年   40篇
  2007年   41篇
  2006年   22篇
  2005年   23篇
  2004年   27篇
  2003年   11篇
  2002年   13篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
101.
Alzheimer’s disease (AD) is a neurodegenerative disorder affecting 35 million people worldwide. A common strategy to improve the well-being of AD patients consists on the inhibition of acetylcholinesterase with the concomitant increase of the neurotransmitter acetylcholine at cholinergic synapses. Two series of unreported N-benzylpiperidines 5(ah) and thiazolopyrimidines 9(aq) molecules were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) inhibitory activities. Among the newly synthesized compounds, 5h, 9h, 9j, and 9p displayed higher AChE enzyme inhibitory activities than the standard drug, galantamine, with IC50 values of 0.83, 0.98, and 0.73 μM, respectively. Cytotoxicity studies of 5h, 9h, 9j, 9n and 9p on human neuroblastoma cells SH-SY5Y, showed no toxicity up to 40 μM concentration. Molecular docking simulations of the active compounds 5h and 9p disclosed the crucial role of π-π-stacking in their binding interaction to the active site AChE enzyme. The presented compounds have potential as AChE inhibitors and potential AD drugs.  相似文献   
102.
A new series of coumarin‐3‐carboxamide‐N‐morpholine hybrids 5a – 5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2‐hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin‐3‐carboxylic acids. Then, amidation of the latter compounds with 2‐morpholinoethylamine or N‐(3‐aminopropyl)morpholine led to the formation of the compounds 5a – 5l . The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N‐[3‐(morpholin‐4‐yl)propyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6‐bromo‐N‐[2‐(morpholin‐4‐yl)ethyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing a 6‐bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti‐BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE.  相似文献   
103.
104.
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.  相似文献   
105.
Rheumatoid arthritis (RA) is an autoimmune disease, pathologically characterized by lymphocyte infiltration of the synovial membrane that leads to chronic inflammation and progressive joint damage. RA develops as a result of increased cell infiltration and cell proliferation as well as impaired cell death. Activated cells in joints including lymphocytes and fibroblast-like synoviocytes (FLS) survive for a long time as a consequence of compromised apoptosis, but the mechanism underlying cell survival in synovium remains to be firmly established. Inhibition of apoptosis by survivin, as a critical antiapoptotic protein, contributes to both the persistence of autoreactive T lymphocytes and tumor-like phenotype of FLS in RA. In addition to the antiapoptotic role, survivin also has prognostic relevance in RA prodromal phase. Hence, this review provides an overview of the current knowledge regarding the involvement of survivin protein in the pathogenesis of RA.  相似文献   
106.
Conversion of CO2 to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2 reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2 saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2 to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2 cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.  相似文献   
107.
Journal of Molecular Modeling - The adsorption and inhibition mechanism of chain length increase and group substitution of imidazole tetrafluoroborate derivatives for the corrosion inhibition of...  相似文献   
108.
We aimed to study the relation between plasma levels of stress-induced heat shock protein 70 (HSPA1A) with plasminogen activator inhibitor-1 (PAI-1) and high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (Apo-A1), and HDL-C/Apo-A1 ratio. In a matched case-control study on patients with diabetes (40 patients with albuminuria and 40 without albuminuria matched for age, sex, and body mass index), we observed that plasma levels of HSPA1A and PAI-1 are increased in patients with albuminuria (0.55 ± 0.02 vs. 0.77 ± 0.04 ng/ml, p value <0.001 for HSPA1A; 25.9 ± 2 vs. 31.8 ± 2.4 ng/ml, p value <0.05 for PAI-1). There was a significant correlation between HSPA1A and PAI-1 in diabetic patients without albuminuria (r = 0.28; p value = 0.04), but not in those with albuminuria (r = 0.07; p value = 0.63). No association was found between HSPA1A and HDL-C, between HSPA1A and Apo-A1, or between HSPA1A and HDL-C/Apo-A1 ratio. We concluded that there is a direct correlation between plasma HSPA1A and PAI-1 levels in patients with diabetes, which is lost when they develop albuminuria.  相似文献   
109.
Background:Prostate cancer (PC) is one of the most abundant cancers among men, and In Iran, has been responsible for 6% of all deaths from cancer in men. NUF2 and GMNN genes are considered as loci of susceptibility to tumorigenesis in humans. Alterations in expression of these genes have been reported in various malignancies. The aim of our study was to test whether different NUF2 and GMNN expression levels are associated with PC incidence and hence, might be considered as new molecular tools for PC screening.Methods:Biopsy samples from 40 PC patients and 41 healthy Iranian men were used to determine the relative gene expression. After RNA extraction and cDNA synthesis, samples were analyzed using TaqMan Quantitative Real time PCR. Patients’ background information, included smoking habits and family histories of PC, were recorded. Stages and grades of their PC were classified by the TNM tumor, node, metastasis (TMN) staging system based on standard guidelines.Results:NUF2 expression did not significantly differ between the groups, while GMNN expression was significantly greater in the PC specimens than in the controls.Conclusion:Regarding the significant role of GMNN in various tumor phenotypes, and its importance in PC progression, the alteration in GMNN expression in PC samples vs. controls indicate that the genetic profiling of this cancer might be considered to personalize therapy for each patient in the future.Key Words: Family history, Geminin (GMNN), Tumor staging, NUF2, Prostate cancer  相似文献   
110.
Mentha longifolia L. is well-known to be one of the most pervasive wild-growing species of the Lamiaceae family, which has extensive beneficial properties in the fields of pharmacology and biological products. In the present study, the correlation between Inter-simple sequence repeat (ISSR) markers and morpho-chemical parameters of twenty different M. longifolia accessions (MLACs) were assessed. The geographic information system (GIS) has been employed to interpret the original habitat of the accessions in Iran. ISSR analysis indicated a remarkable difference in the studied accessions, segregated them into three main groups, constructed by an unweighted pair-group method with arithmetic (UPGMA) and principal coordinate analysis (PCoA). A total of 89 bands were generated by 12 ISSR primers, among which 82 (91.97 %) of them were polymorphic. The cluster analysis based on agro-morphological data scattered MLACs into two main groups. The essential oils (EOs) were analyzed through GC/FID/MS, and four chemotypes were characterized according to the major constituents. Pulegone ranged from 0.17 to 69.50 % was the main oil constituent with the highest content. Also, HPLC-PDA was employed to identify and to quantify the phenolic compounds in the MeOH extracts of MLACs. Heatmap cluster based on phenolic compounds produced three main categories of accessions. The components identified in the extracts were rosmarinic acid, rutin, vanillic acid, ferulic acid, chlorogenic acid, caffeic acid, 3,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, and p-coumaric acid, which among them rosmarinic acid (RA) varied from 39.16 to 261.55 mg/100 g (DW) as a predominant constituent. Subsequently, multiple regression analyses between ISSR fragments and morpho-chemical data illustrated considerable relationships in the plant materials. The high variation and correlation observed in metabolic and phenotypic traits of MLACs establish an adequate source to conduct reserves conservation programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号