首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4014篇
  免费   341篇
  2022年   39篇
  2021年   76篇
  2020年   65篇
  2019年   70篇
  2018年   95篇
  2017年   86篇
  2016年   126篇
  2015年   174篇
  2014年   205篇
  2013年   271篇
  2012年   291篇
  2011年   232篇
  2010年   172篇
  2009年   119篇
  2008年   188篇
  2007年   198篇
  2006年   145篇
  2005年   140篇
  2004年   113篇
  2003年   116篇
  2002年   121篇
  2001年   77篇
  2000年   76篇
  1999年   68篇
  1998年   46篇
  1997年   23篇
  1996年   29篇
  1995年   38篇
  1994年   25篇
  1992年   46篇
  1991年   59篇
  1990年   63篇
  1989年   60篇
  1988年   45篇
  1987年   29篇
  1986年   32篇
  1985年   32篇
  1984年   29篇
  1983年   28篇
  1982年   33篇
  1981年   29篇
  1979年   32篇
  1978年   32篇
  1974年   22篇
  1973年   23篇
  1972年   23篇
  1971年   22篇
  1970年   26篇
  1967年   21篇
  1966年   19篇
排序方式: 共有4355条查询结果,搜索用时 15 毫秒
251.
The stromal processing peptidase (SPP) catalyzes removal of transit peptides from a diversity of precursor proteins imported into chloroplasts. SPP contains an HXXEH zinc-binding motif characteristic of members of the metallopeptidase family M16. We previously found that the three steps of precursor processing by SPP (i.e. transit peptide binding, removal, and conversion to a degradable subfragment) are mediated by features that reside in the C-terminal 10-15 residues of the transit peptide. In this study, we performed a mutational analysis of SPP to identify structural elements that determine its function. SPP loses the ability to proteolytically remove the transit peptide when residues of the HXXEH motif, found in an N-terminal region, are mutated. Deletion of 240 amino acids from its C terminus also abolishes activity. Interestingly, however, SPP can still carry out the initial binding step, recognizing the C-terminal residues of the transit peptide. Hence, transit peptide binding and removal are two separable steps of the overall processing reaction. Transit peptide conversion to a subfragment also depends on the HXXEH motif. The precursor of SPP, containing an unusually long transit peptide itself, is not proteolytically active. Thus, the SPP precursor is synthesized as a latent form of the metallopeptidase.  相似文献   
252.
A first molecular phylogenetic analysis of Passiflora (Passifloraceae)   总被引:1,自引:0,他引:1  
Passiflora, a genus with more than 400 species, exhibits a high diversity of floral and vegetative structures and a complex taxonomy, which includes 23 subgenera and many sections and series. To better understand Passiflora's variability and interspecific relationships, the phylogeny of 61 species, classified in 11 of 23 suggested subgenera, was investigated. Three molecular markers were used, the nuclear ribosomal internal transcribed spacers (nrITS), the plastid trnL-trnF spacer regions (~1000 bp), and the rps4 plastid gene (~570 bp). Three major clades were highly supported, independent of the marker and phylogenetic method used; one included the subgenera Distephana, Dysosmia, Dysosmioides, Passiflora, and Tacsonioides, a second, the subgenera Adopogyne, Decaloba, Murucuja, and Pseudomurucuja, and a third, the subgenus Astrophea. We call these the Passiflora, Decaloba, and Astrophea clades, respectively. The position of subgenus Deidamioides is undefined. The monophyly of Passiflora could not be statistically corroborated, and the relationships among the major clades and of these clades with the related genera remain unresolved. Our results indicate that a reevaluation of the monophyly of Passiflora and its infrageneric classification is necessary.  相似文献   
253.
The discovery of small molecule kinase inhibitors for use as drugs is a promising approach for the treatment of cancer and other diseases, but the discovery of highly specific agents is challenging because over 850 kinases are expressed in mammalian cells. Systematic modification of the 4-anilino functionality of a selective quinazoline inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase can invert selectivity to favor inhibition of the highly homologous erbB2 tyrosine kinase. The selectivity pattern was demonstrated in assays of recombinant kinases and recapitulated in measures of kinase activity in intact cells. The most potent and selective erbB2 inhibitor of the analog series has anti-proliferative activity against an erbB2-overexpressing cell line that was lacking in the original EGFR-selective compound. Subtle changes to the molecular structure of ATP-competitive small molecule inhibitors of tyrosine kinases can yield dramatic changes in potency and selectivity. These results suggest that the discovery of highly selective small molecule inhibitors of very homologous kinases is achievable.  相似文献   
254.
Derivatives of dimethylalkylchlorosilanes are novel substances which may be used in formulations for drug targeting. In order to design their properties it is essential to perform physicochemical characterization. For this purpose, a combination of differential scanning calorimetry (DSC), FT-Raman spectroscopy and X-ray diffraction is well suited. For the starting material dimethyloctadecylchlorosilane (DMOC), the assignment of Raman bands is discussed. The influence of sugar-containing head groups on the structures of the hydrocarbon chains of 1-O-(dimethyldodecylsilyl)-[2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside] and 1-O-(dimethyloctadecylsilyl)-[2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside] was investigated using the band position of the symmetric methylene mode. The temperature dependence of conformationally sensitive bands in the CH(2)-stretching region (2800-2900 cm(-1)), C-C-stretching region (1000-1150 cm(-1)) and CH(3)-rocking region (830-900 cm(-1)) was studied to characterize the state of order of the alkyl chains. Using X-ray diffraction, the repeating distances of layered structures was determined. The phase transitions occurring were found to be completely reversible. The subcell of DMOC shows an orthorhombic perpendicular packing structure in the crystalline state.  相似文献   
255.
The dnaA operon of Escherichia coli contains the genes dnaA, dnaN, and recF encoding DnaA, beta clamp of DNA polymerase III holoenzyme, and RecF. When the DnaA concentration is raised, an increase in the number of DNA replication initiation events but a reduction in replication fork velocity occurs. Because DnaA is autoregulated, these results might be due to the inhibition of dnaN and recF expression. To test this, we examined the effects of increasing the intracellular concentrations of DnaA, beta clamp, and RecF, together and separately, on initiation, the rate of fork movement, and cell viability. The increased expression of one or more of the dnaA operon proteins had detrimental effects on the cell, except in the case of RecF expression. A shorter C period was not observed with increased expression of the beta clamp; in fact, many chromosomes did not complete replication in runout experiments. Increased expression of DnaA alone resulted in stalled replication forks, filamentation, and a decrease in viability. When the three proteins of the dnaA operon were simultaneously overexpressed, highly filamentous cells were observed (>50 micro m) with extremely low viability and, in runout experiments, most chromosomes had not completed replication. The possibility that recombinational repair was responsible for the survival of cells overexpressing DnaA was tested by using mutants in different recombinational repair pathways. The absence of RecA, RecB, RecC, or the proteins in the RuvABC complex caused an additional approximately 100-fold drop in viability in cells with increased levels of DnaA, indicating a requirement for recombinational repair in these cells.  相似文献   
256.
257.
The LOV2 domain of Avena sativa phototropin and its C450A mutant were expressed as recombinant fusion proteins and were examined by optical spectroscopy, electron paramagnetic resonance, and electron-nuclear double resonance. Upon irradiation (420-480 nm), the LOV2 C450A mutant protein gave an optical absorption spectrum characteristic of a flavin radical even in the absence of exogenous electron donors, thus demonstrating that the flavin mononucleotide (FMN) cofactor in its photogenerated triplet state is a potent oxidant for redox-active amino acid residues within the LOV2 domain. The FMN radical in the LOV2 C450A mutant is N(5)-protonated, suggesting that the local pH close to the FMN is acidic enough so that the cysteine residue in the wild-type protein is likely to be also protonated. An electron paramagnetic resonance analysis of the photogenerated FMN radical gave information on the geometrical and electronic structure and the environment of the FMN cofactor. The experimentally determined hyperfine couplings of the FMN radical point to a highly restricted delocalization of the unpaired electron spin in the isoalloxazine moiety. In the light of these results a possible radical-pair mechanism for the formation of the FMN-C(4a)-cysteinyl adduct in LOV domains is discussed.  相似文献   
258.
Within the Cladocera, the water-fleas, four major taxa can be distinguished: Anomopoda, Ctenopoda, Haplopoda, and Onychopoda. Haplopoda and Onychopoda are called "predatory water-fleas." The Haplopoda is monotypic; its only representative, Leptodora kindtii, is common in palearctic and nearctic freshwater bodies. The Onychopoda show a remarkable geographic distribution. Most of the described species are restricted to the Caspian Sea, the Aral Sea, and peripheral areas of the Black Sea, including the Sea of Azov--all remnants of the Eastern Paratethys. The remaining onychopods are either freshwater inhabitants or marine animals, widespread in the world oceans. We present molecular evidence for a sister group relationship between Haplopoda and Onychopoda within the Cladocera. The Onychopoda and its three families are monophyletic. We suggest an independent invasion into the Ponto-Caspian basin at least three times, twice originating in the palearctic freshwater bodies and once starting from the world oceans.  相似文献   
259.
260.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号