首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4004篇
  免费   342篇
  2022年   30篇
  2021年   76篇
  2020年   65篇
  2019年   70篇
  2018年   95篇
  2017年   86篇
  2016年   126篇
  2015年   174篇
  2014年   205篇
  2013年   271篇
  2012年   291篇
  2011年   232篇
  2010年   172篇
  2009年   119篇
  2008年   188篇
  2007年   198篇
  2006年   145篇
  2005年   140篇
  2004年   113篇
  2003年   116篇
  2002年   121篇
  2001年   77篇
  2000年   76篇
  1999年   68篇
  1998年   46篇
  1997年   23篇
  1996年   29篇
  1995年   38篇
  1994年   25篇
  1992年   46篇
  1991年   59篇
  1990年   63篇
  1989年   60篇
  1988年   45篇
  1987年   29篇
  1986年   32篇
  1985年   32篇
  1984年   29篇
  1983年   28篇
  1982年   33篇
  1981年   29篇
  1979年   32篇
  1978年   32篇
  1974年   22篇
  1973年   23篇
  1972年   23篇
  1971年   22篇
  1970年   26篇
  1967年   21篇
  1966年   19篇
排序方式: 共有4346条查询结果,搜索用时 15 毫秒
241.
DEK was originally described as a proto-oncogene protein and is now known to be a major component of metazoan chromatin. DEK is able to modify the structure of DNA by introducing supercoils. In order to find interaction partners and functional domains of DEK, we performed yeast two-hybrid screens and mutational analyses. Two-hybrid screening yielded C-terminal fragments of DEK, suggesting that DEK is able to multimerize. We could localize the domain to amino acids 270 to 350 and show that multimerization is dependent on phosphorylation by CK2 kinase in vitro. We also found two DNA binding domains of DEK, one on a fragment including amino acids 87 to 187 and containing the SAF-box DNA binding motif, which is located between amino acids 149 and 187. This region is sufficient to introduce supercoils into DNA. The second DNA binding domain is located between amino acids 270 and 350 and thus overlaps the multimerization domain. We show that the two DNA-interacting domains differ in their binding properties and in their abilities to respond to CK2 phosphorylation.  相似文献   
242.
Clerocidin (CL) is a topoisomerase II poison, which cleaves DNA irreversibly at guanines (G) and reversibly at cytosines (C). Furthermore, the drug can induce enzyme-independent strand breaks at the G and C level. It has been previously shown that G-damage is induced by alkylation of the guanine N7, followed by spontaneous depurination and nucleic acid cleavage, whereas scission at C is obtained only after treatment with hot alkali, and no information is available to explain the nature of this damage. We present here a systematic study on the reactivity of CL towards C both in the DNA environment and in solution. Selected synthetic derivatives were employed to evaluate the role of each chemical group of the drug. The structure of CL–dC adduct was then characterized by tandem mass spectrometry and NMR: the adduct is a stable condensed ring system resulting from a concerted electrophilic attack of the adjacent carbonyl and epoxide groups of CL towards the exposed NH2 and N3, respectively. This reaction mechanism, shown here for the first time, is characterized by faster kinetic rates than alkylation at G, due to the fact that the rate-determining step, alkylation at the epoxide, is an intramolecular process, provided a Schiff base linking CL and C can rapidly form, whereas the corresponding reaction of G N7 is intermolecular. These results provide helpful hints to explain the reversible/irreversible nature of topoisomerase II mediated DNA damage produced by CL at C/G steps.  相似文献   
243.
Phenylketonuria (PKU), the most frequent inborn error of metabolism (1/15,000 live births), is an autosomal recessive condition caused by phenylalanine hydroxylase deficiency. Despite early and strict dietary control, some PKU children still exhibit behavioral and cognitive difficulties suggestive of a partly prenatal brain injury. The reported variability between the cognitive and clinical phenotypes within the same family raises the question of modifying genes in PKU. We suggest here that monoamine oxidase type B, MAOB, an enzyme degrading phenylethylamine, a very toxic metabolite of phenylalanine, could act as a modifying gene since a variant enzymatic activity of MAOB in PKU patients with similar phenylalanine levels would result in different phenylethylamine levels and different clinical outcomes. Finally the report of low MAOB, and consequently expectedly high phenylethylamine levels in neonates is consistent with a phenylethylamine-mediated brain injury possibly causing irreversible damages in PKU newborns prior to onset of the low protein diet.  相似文献   
244.
The aim of the study was a cross-cultural comparison of personality traits between individuals from two very different cultures and refugees who resettled several years before from one to the other. Four hundred forty four Swedish individuals of the normal population; and 100 Iranian refugees in Sweden, and a group of 335 individuals from Tehran, capital of Iran, were investigated by means of the Temperament and Character Inventory, a questionnaire to assess temperament and character Iranians are those that are most frequently correctly classified followed by the Swedish based on temperament scores by means of a Discriminance analyses. Iranian refugees in Sweden were classified to about 50 per cent as Swedish and to slightly more then one-third as Iranians. Especially concerning character, 4 per cent only could be correctly classified as refugees. The results give some perspective on the adaptation process and personality changes in refugees several years after resettlement in another country with a complete different culture.  相似文献   
245.
In the current study we investigated the effect of the branched-chain alpha-keto acids (BCKA) co-ketoisocaproic (KIC), alpha-keto-beta-methylvaleric (KMV), and alpha-ketoisovaleric (KIV) acids, which accumulate in maple syrup urine disease (MSUD), on the in vitro uptake of [3H]glutamate by cerebral cortical slices from rats aged 9, 21, and 60 days of life. We initially observed that glutamate uptake into cerebral cortex of 9- and 21-day-old rats was significantly higher, as compared to that of 60-day-old rats. Furthermore, KIC inhibited this uptake by tissue slices at all ages studied, whereas KMV and KIV produced the same effect only in cortical slices of 21- and 60-day-old rats. Kinetic assays showed that KIC significantly inhibited glutamate uptake in the presence of high glutamate concentrations (50 microM and greater). We also verified that the reduction of glutamate uptake was not due to cellular death, as evidenced by tetrazolium salt and lactate dehydrogenase viability tests of cortical slices in the presence of the BCKA. It is therefore presumed that the reduced glutamate uptake caused by the BCKA accumulating in MSUD may lead to higher extracellular glutamate levels and potentially to excitotoxicity, which may contribute to the neurological dysfunction of the affected individuals.  相似文献   
246.
Angiotensin II (AII), a product of rennin-angiotensin system, exerts an important role on the function of immune system cells. In this study, the effect of AII on the phagocytic activity of mouse peritoneal macrophages was assessed. Mice peritoneal macrophages were cultured for 48 h and the influence of different concentrations of AII (10(-14) to 10(-7) M) and/or losartan, 10(-16) to 10(-6) M), an AT1 angiotensin receptor antagonist, on phagocytic activity and superoxide anion production was determined. Dimethylthiazoldiphenyltetrazolium bromide reduction and the nucleic acid content were used to assess the cvtotoxicity of losartan. A stimulatory effect on phagocytic activity (P < 0.05) was observed with 10(-13) M and 10(-12 M) AII concentrations. The addition of losartan (up to10(-14) M) to the cell cultures blocked (P < 0.001) the phagocytosis indicating the involvement of AT1 receptors. In contrast, superoxide anion production was not affected by AII or losartan. The existence of AT1 and AT2 receptors in peritoneal macrophages was demonstrated by immunofluorescence microscopy. These results support the hypothesis that AII receptors can modulate murine macrophage activity and phagocytosis, and suggest that AII may have a therapeutic role as an immunomodulatory agent in modifying the host resistance to infection.  相似文献   
247.
In two experiments (EXP), 44 and 52 crossbred gilts (mean age+/-S.D. and weight+/-S.D.: 204+/-22 and 203+/-9 days, 114+/-13 and 127+/-12 kg, respectively, in EXP 1 and 2) from four farms were examined by means of transcutaneous ultrasonography (US) to define the characteristics of the ovaries and the uterus (echotexture, size) and to investigate the appropriateness of US to determine sexual maturity. Gilts were judged as prepubertal [PRE; follicles 2-5 mm (F2-5) only] or pubertal [PUB; F7-8, corpora lutea (CL), corpora haemorrhagica (CH)] at the first (PUB-1; EXP 1) or a subsequent estrous cycle [PUB-2; additionally corpora albicantia (CA); EXP 1] by US, and results were verified by postmortem examination (EXP 1), or progesterone analysis and detection of estrous signs (EXP 2). Accuracy of US was 100% for PRE and PUB (both EXP) and 77.3% for PUB-1 and PUB-2 (EXP 1). PRE and PUB with CL/CH had uteri of homogeneous, PUB with F7-8 of heterogeneous echotexture. The size was expressed as the mean sectional area (SAsono) of 2-5 cross-sections of the uterine horns (calculated by multiplication of 1/2 the maximum x the minimum dimension of the cross-sections x pi). SAsono corresponded with the sectional area of postmortem dissected transverse uterine segments relatively with r=0.92 (P<0.0001; EXP 1). Mean SAsono (both EXP) and mean uterine weight (EXP 1) were PRE相似文献   
248.
Barnard DC  Ryan K  Manley JL  Richter JD 《Cell》2004,119(5):641-651
Cytoplasmic polyadenylation-induced mRNA translation is a hallmark of early animal development. In Xenopus oocytes, where the molecular mechanism has been defined, the core factors that control this process include CPEB, an RNA binding protein whose association with the CPE specifies which mRNAs undergo polyadenylation; CPSF, a multifactor complex that interacts with the near-ubiquitous polyadenylation hexanucleotide AAUAAA; and maskin, a CPEB and eIF4E binding protein whose regulation of initiation is governed by poly(A) tail length. Here, we define two new factors that are essential for polyadenylation. The first is symplekin, a CPEB and CPSF binding protein that serves as a scaffold upon which regulatory factors are assembled. The second is xGLD-2, an unusual poly(A) polymerase that is anchored to CPEB and CPSF even before polyadenylation begins. The identification of these factors has broad implications for biological process that employ polyadenylation-regulated translation, such as gametogenesis, cell cycle progression, and synaptic plasticity.  相似文献   
249.
Cryo-electron microscopy of vitreous sections   总被引:10,自引:0,他引:10  
Since the beginning of the 1980s, cryo-electron microscopy of a thin film of vitrified aqueous suspension has made it possible to observe biological particles in their native state, in the absence of the usual artefacts of dehydration and staining. Combined with 3-d reconstruction, it has become an important tool for structural molecular biology. Larger objects such as cells and tissues cannot generally be squeezed in a thin enough film. Cryo-electron microscopy of vitreous sections (CEMOVIS) provides then a solution. It requires vitrification of a sizable piece of biological material and cutting it into ultrathin sections, which are observed in the vitrified state. Each of these operations raises serious difficulties that have now been overcome. In general, the native state seen with CEMOVIS is very different from what has been seen before and it is seen in more detail. CEMOVIS will give its full potential when combined with computerized electron tomography for 3-d reconstruction.  相似文献   
250.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the unspecific aggregation of proteins. So far, Hsp26 was the only unambiguously identified member of the sHsp family in Saccharomyces cerevisiae. We show here that the sHsp system in the cytosol of S. cerevisiae consists of two proteins, Hsp26 and Hsp42. Hsp42 forms large dynamic oligomers with a barrel-like structure. In contrast to Hsp26, which functions predominantly at heat shock temperatures, Hsp42 is active as a chaperone under all conditions tested in vivo and in vitro. Under heat shock conditions, both Hsp42 and Hsp26 suppress the aggregation of one-third of the cytosolic proteins. This subset is about 90% overlapping for Hsp42 and Hsp26. The sHsp substrates belong to different biochemical pathways. This indicates a general protective function of sHsps for proteome stability in S. cerevisiae. Consistent with this observation, sHsp knockout strains show phenotypical defects. Taken together, our results define Hsp42 as an important player for protein homeostasis at physiological and under stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号