首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1645篇
  免费   173篇
  2023年   12篇
  2022年   23篇
  2021年   34篇
  2020年   29篇
  2019年   22篇
  2018年   38篇
  2017年   35篇
  2016年   53篇
  2015年   62篇
  2014年   87篇
  2013年   121篇
  2012年   129篇
  2011年   113篇
  2010年   70篇
  2009年   57篇
  2008年   85篇
  2007年   96篇
  2006年   64篇
  2005年   77篇
  2004年   82篇
  2003年   55篇
  2002年   45篇
  2001年   37篇
  2000年   35篇
  1999年   29篇
  1998年   19篇
  1997年   15篇
  1996年   18篇
  1995年   16篇
  1994年   18篇
  1993年   11篇
  1992年   16篇
  1991年   11篇
  1990年   16篇
  1989年   18篇
  1988年   15篇
  1987年   10篇
  1986年   9篇
  1985年   11篇
  1984年   8篇
  1983年   10篇
  1981年   11篇
  1980年   5篇
  1979年   8篇
  1978年   15篇
  1977年   5篇
  1976年   9篇
  1975年   6篇
  1973年   5篇
  1967年   5篇
排序方式: 共有1818条查询结果,搜索用时 15 毫秒
81.
Grain size and weight are important components of a suite of yield‐related traits in crops. Here, we showed that the CRISPR‐Cas9 gene editing of TaGW7, a homolog of rice OsGW7 encoding a TONNEAU1‐recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homoeologs in the B and D genomes, we showed that mutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homoeologs coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double‐copy mutant showing larger effect than the respective single copy mutants. The TaGW7‐centered gene co‐expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co‐localization of TaGW7 with α‐ and β‐tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetraploid domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7‐associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR‐Cas9 system with cross‐species comparison can help to uncover the function of a gene fixed in wheat for allelic variants targeted by domestication selection and select targets for engineering new gene variants for crop improvement.  相似文献   
82.
Evidence for specific and direct bacterial product recognition through toll-like receptors (TLRs) has been emphasized recently. We analyzed lipopeptide analogues and enterobacterial lipopolysaccharide (eLPS) for their potential to activate cells through TLR2 and TLR4. Whereas bacterial protein palmitoylated at its N-terminal cysteine and N-terminal peptides derived thereof are known to induce TLR2-mediated cell activation, a synthetic acylhexapeptide mimicking a bacterial lipoprotein subpopulation for which N-terminal trimyristoylation is characteristic (Myr(3)CSK(4)) activated cells not only through TLR2 but also through TLR4. Conversely, highly purified eLPS triggered cell activation through overexpressed TLR2 in the absence of TLR4 expression if CD14 was coexpressed. Accordingly, TLR2(-/-) macrophages prepared upon gene targeting responded to Myr(3)CSK(4) challenge, whereas TLR2(-/-)/TLR4(d/d) cells were unresponsive. Through interferon-gamma (IFNgamma) priming, macrophages lacking expression of functional TLR4 and/or MD-2 acquired sensitivity to eLPS, whereas TLR2/TLR4 double deficient cells did not. Not only TLR2(-/-) mice but also TLR4(-/-) mice were resistant to Myr(3)CSK(4) challenge-induced fatal shock. d-Galactosamine-sensitized mice expressing defective TLR4 or lacking TLR4 expression acquired susceptibility to eLPS-driven toxemia upon IFNgamma priming, whereas double deficient mice did not. Immunization toward ovalbumin using Myr(3)CSK(4) as adjuvant was ineffective in TLR2(-/-)/TLR4(-/-) mice yet effective in wild-type, TLR2(-/-), or TLR4(-/-) mice as shown by analysis of ovalbumin-specific serum Ig concentration. A compound such as Myr(3)CSK(4) whose stimulatory activity is mediated by both TLR2 and TLR4 might constitute a preferable adjuvant. On the other hand, simultaneous blockage of both of the two TLRs might effectively inhibit infection-induced pathology.  相似文献   
83.
Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1). In cell culture, nsp1 of mouse hepatitis virus (MHV), like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN) receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.  相似文献   
84.
Interleukin-2 (IL-2) is a potent molecule in cancer therapy. Clinical application, however, is limited due to its strong side effects during the treatment. We developed an IL-2 variant (IL-2v) immunocytokine to circumvent the drawbacks of the current IL-2 therapy. During the production of the IL-2v immunocytokine in Chinese hamster ovary (CHO) cells, molecules with fragmented IL-2v and therefore reduced cytokine activity can be observed. To control product fragmentation different production process conditions were investigated. By shifting temperature or pH after the cell growth phase to lower values, fragmented species can be reduced from 10% to 12% to about 4%. However, with the adopted process conditions, the effective titer is decreased concomitantly. Moreover, fermentation length and inoculation cell density are parameters to adjust fragmentation and effective titer. A suitable method for efficient process optimization is the design of experiment approach. With this procedure, novel optimal values for temperature, pH value, harvest day, and inoculation cell densities were proposed and tested subsequently. In comparison to the former process, the improved process reduces fragmentation by 66% while keeping the effective titer comparable. In summary, these findings will help to control fragmentation in CHO production processes of different IL-2v or IL-2 containing therapeutic proteins.  相似文献   
85.
Biological Trace Element Research - We analyzed cobalt (Co), chromium (Cr), and lead (Pb) concentrations in human semen and catalase CAT activity in seminal plasma and the effects of their...  相似文献   
86.
Compared with other SARS-related coronaviruses (SARSr-CoVs), SARS-CoV-2 possesses a unique furin cleavage site (FCS) in its spike. This has stimulated discussion pertaining to the origin of SARS-CoV-2 because the FCS has been observed to be under strong selective pressure in humans and confers the enhanced ability to infect some cell types and induce cell–cell fusion. Furthermore, scientists have demonstrated interest in studying novel cleavage sites by introducing them into SARSr-CoVs. We review what is known about the SARS-CoV-2 FCS in the context of its pathogenesis, origin, and how future wildlife coronavirus sampling may alter the interpretation of existing data.  相似文献   
87.
Chinese hamster ovary (CHO) cells are the leading platform for the production of biopharmaceuticals with human-like glycosylation. The standard practice for cell line generation relies on trial and error approaches such as adaptive evolution and high-throughput screening, which typically take several months. Metabolic modeling could aid in designing better producer cell lines and thus shorten development times. The genome-scale metabolic model (GSMM) of CHO can accurately predict growth rates. However, in order to predict rational engineering strategies it also needs to accurately predict intracellular fluxes. In this work we evaluated the agreement between the fluxes predicted by parsimonious flux balance analysis (pFBA) using the CHO GSMM and a wide range of 13C metabolic flux data from literature. While glycolytic fluxes were predicted relatively well, the fluxes of tricarboxylic acid (TCA) cycle were vastly underestimated due to too low energy demand. Inclusion of computationally estimated maintenance energy significantly improved the overall accuracy of intracellular flux predictions. Maintenance energy was therefore determined experimentally by running continuous cultures at different growth rates and evaluating their respective energy consumption. The experimentally and computationally determined maintenance energy were in good agreement. Additionally, we compared alternative objective functions (minimization of uptake rates of seven nonessential metabolites) to the biomass objective. While the predictions of the uptake rates were quite inaccurate for most objectives, the predictions of the intracellular fluxes were comparable to the biomass objective function.  相似文献   
88.
Pestiviruses are positive-strand RNA viruses closely related to human hepatitis C virus. Gene expression of these viruses occurs via translation of a polyprotein, which is further processed by cellular and viral proteases. Here we report the formation of a stable complex between an as-yet-undescribed cellular J-domain protein, a member of the DnaJ-chaperone family, and pestiviral nonstructural protein NS2. Accordingly, we termed the cellular protein Jiv, for J-domain protein interacting with viral protein. Jiv has the potential to induce in trans one specific processing step in the viral polyprotein, namely, cleavage of NS2-3. Efficient generation of its cleavage product NS3 has previously been shown to be obligatory for the cytopathogenicity of the pestiviruses. Regulated expression of Jiv in cells infected with noncytopathogenic bovine viral diarrhea virus disclosed a direct correlation between the intracellular level of Jiv, the extent of NS2-3 cleavage, and pestiviral cytopathogenicity.  相似文献   
89.
Chronic hepatitis C virus (HCV) infection is associated with an increased production of reactive oxygen species within the liver that are responsible for the oxidation of intracellular macromolecules. To ascertain whether the increased risk of hepatocellular carcinoma in individuals with chronic HCV infection is related to an accumulation of oxidative DNA damage, the 8-hydroxydeoxyguanosine (8-OHdG) content in the DNA of liver tissue and leukocytes of 87 individuals with HCV- or HBV-related liver disease and of 10 healthy controls was measured. Serum levels of thiobarbituric acid reactive substances (TBARS) were also assessed as an index of lipid peroxidation. RESULTS: The 8-OHdG content in the circulating leukocytes correlated with that of liver tissue (r = 0.618, p < .0004). HCV patients had the highest median 8-OHdG levels (p < .0004). 8-OHdG leukocyte levels in HCV patients were higher than in HBV patients (p < .04) and they significantly correlated with the clinical diagnosis (p < .025), the serum ferritin levels (p < .05), and the amount of liver steatosis (p < .001). No correlation was found with age, gender, history of drinking or smoking, ALT or GGT levels, ESR, alpha-1, or gamma-globulin level and Ishak score. TBARS levels were significantly higher in cirrhotics than in noncirrhotics (p < .01). CONCLUSIONS: The 8-OHdG level in circulating leukocytes is a reliable marker of oxidative stress occurring in the liver of individuals with chronic HCV infection. DNA oxidative damage appears to be an early and unique event in the natural history of HCV-related hepatitis. This injury increases the risk of genomic damage and may be one of the important factors involved in the carcinogenic process in cases of HCV-related chronic liver disease.  相似文献   
90.
Recently, we described two novel constituents of the multimolecular initiation complex of the mannan-binding lectin (MBL) pathway of complement activation, a serine protease of 76 kDa, termed MASP-2, and a MASP-2 related plasma protein of 19 kDa, termed MAp19. Upon activation of the MBL/MASPs/MAp19 complex, MASP-2 cleaves the fourth complement component C4, while the role of MAp19 within the MBL/MASP-1/MASP-2/MAp19 complex remains to be clarified. In humans, the mRNA species encoding MASP-2 (2.6 kb) and MAp19 (1.0 kb) arise by an alternative polyadenylation/splicing mechanism from a single structural MASP-2 gene. Here, we report the complete primary structures of the rat homologue of MASP-2 and of rat and mouse MAp19. We show that both MASP-2 and MAp19 are part of the rat MBL pathway activation complex and demonstrate their exclusively hepatic biosynthesis. Southern blot and PCR analyses of rat genomic DNA indicate that as in humans, rat MASP-2 and MAp19 are encoded by a single structural gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号