首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1987篇
  免费   139篇
  2126篇
  2023年   12篇
  2022年   29篇
  2021年   35篇
  2020年   26篇
  2019年   25篇
  2018年   33篇
  2017年   41篇
  2016年   56篇
  2015年   91篇
  2014年   96篇
  2013年   124篇
  2012年   132篇
  2011年   132篇
  2010年   91篇
  2009年   66篇
  2008年   89篇
  2007年   87篇
  2006年   72篇
  2005年   62篇
  2004年   64篇
  2003年   54篇
  2002年   44篇
  2001年   35篇
  2000年   28篇
  1999年   36篇
  1998年   19篇
  1997年   18篇
  1996年   18篇
  1995年   12篇
  1994年   11篇
  1993年   17篇
  1992年   17篇
  1991年   25篇
  1990年   25篇
  1989年   28篇
  1988年   19篇
  1987年   28篇
  1986年   29篇
  1985年   24篇
  1984年   13篇
  1982年   13篇
  1980年   11篇
  1978年   15篇
  1977年   15篇
  1976年   18篇
  1974年   14篇
  1972年   10篇
  1971年   16篇
  1970年   15篇
  1966年   14篇
排序方式: 共有2126条查询结果,搜索用时 13 毫秒
981.
Differences in brain structure between species have long fascinated evolutionary biologists. Understanding how these differences arise requires knowing how they are generated in the embryo. Growing evidence in the field of evolutionary developmental biology (evo-devo) suggests that morphological differences between species result largely from changes in the spatiotemporal regulation of gene expression during development. Corresponding changes in functional cellular behaviors (morphogenetic mechanisms) are only beginning to be explored, however. Here we show that spatiotemporal patterns of tissue contractility are sufficient to explain differences in morphology of the early embryonic brain between disparate species. We found that enhancing cytoskeletal contraction in the embryonic chick brain with calyculin A alters the distribution of contractile proteins on the apical side of the neuroepithelium and changes relatively round cross-sections of the tubular brain into shapes resembling triangles, diamonds, and narrow slits. These perturbed shapes, as well as overall brain morphology, are remarkably similar to those of corresponding sections normally found in species such as zebrafish and Xenopus laevis (frog). Tissue staining revealed relatively strong concentration of F-actin at vertices of hyper-contracted cross-sections, and a finite element model shows that local contraction in these regions can convert circular sections into the observed shapes. Another model suggests that these variations in contractility depend on the initial geometry of the brain tube, as localized contraction may be needed to open the initially closed lumen in normal zebrafish and Xenopus brains, whereas this contractile machinery is not necessary in chick brains, which are already open when first created. We conclude that interspecies differences in cytoskeletal contraction may play a larger role in generating differences in morphology, and at much earlier developmental stages, in the brain than previously appreciated. This study is a step toward uncovering the underlying morphomechanical mechanisms that regulate how neural phenotypic differences arise between species.  相似文献   
982.
Understanding the fate and transport of biological agents into buildings will be critical to recovery and restoration efforts after a biological attack in an urban area. As part of the Interagency Biological Restoration Demonstration (IBRD), experiments were conducted in Fairfax County, VA, to study whether a biological agent can be expected to infiltrate into buildings following a wide-area release. Bacillus thuringiensis var. kurstaki is a common organic pesticide that has been sprayed in Fairfax County for a number of years to control the gypsy moth. Because the bacterium shares many physical and biological properties with Bacillus anthracis, the results from these studies can be extrapolated to a bioterrorist release. In 2009, samples were collected from inside buildings located immediately adjacent to a spray block. A combined probabilistic and targeted sampling strategy and modeling were conducted to provide insight into likely methods of infiltration. Both the simulations and the experimental results indicate sampling entryways and heating, ventilation, and air conditioning (HVAC) filters are reasonable methods for "ruling in" a building as contaminated. Following a biological attack, this method is likely to provide significant savings in time and labor compared to more rigorous, statistically based characterization. However, this method should never be used to "rule out," or clear, a building.  相似文献   
983.
Competitive swimming as a physical activity results in changes to the activity level of the autonomic nervous system (ANS). However, the precise relationship between ANS activity, fatigue and sports performance remains contentious. To address this problem and build a model to support a consistent relationship, data were gathered from national and regional swimmers during two 30 consecutive-week training periods. Nocturnal ANS activity was measured weekly and quantified through wavelet transform analysis of the recorded heart rate variability. Performance was then measured through a subsequent morning 400 meters freestyle time-trial. A model was proposed where indices of fatigue were computed using Banister’s two antagonistic component model of fatigue and adaptation applied to both the ANS activity and the performance. This demonstrated that a logarithmic relationship existed between performance and ANS activity for each subject. There was a high degree of model fit between the measured and calculated performance (R2 = 0.84±0.14,p<0.01) and the measured and calculated High Frequency (HF) power of the ANS activity (R2 = 0.79±0.07, p<0.01). During the taper periods, improvements in measured performance and measured HF were strongly related. In the model, variations in performance were related to significant reductions in the level of ‘Negative Influences’ rather than increases in ‘Positive Influences’. Furthermore, the delay needed to return to the initial performance level was highly correlated to the delay required to return to the initial HF power level (p<0.01). The delay required to reach peak performance was highly correlated to the delay required to reach the maximal level of HF power (p = 0.02). Building the ANS/performance identity of a subject, including the time to peak HF, may help predict the maximal performance that could be obtained at a given time.  相似文献   
984.
The complex process of axon guidance is largely driven by the growth cone, which is the dynamic motile structure at the tip of the growing axon. During axon outgrowth, the growth cone must integrate multiple sources of guidance cue information to modulate its cytoskeleton in order to propel the growth cone forward and accurately navigate to find its specific targets1. How this integration occurs at the cytoskeletal level is still emerging, and examination of cytoskeletal protein and effector dynamics within the growth cone can allow the elucidation of these mechanisms. Xenopus laevis growth cones are large enough (10-30 microns in diameter) to perform high-resolution live imaging of cytoskeletal dynamics (e.g.2-4 ) and are easy to isolate and manipulate in a lab setting compared to other vertebrates. The frog is a classic model system for developmental neurobiology studies, and important early insights into growth cone microtubule dynamics were initially found using this system5-7 . In this method8, eggs are collected and fertilized in vitro, injected with RNA encoding fluorescently tagged cytoskeletal fusion proteins or other constructs to manipulate gene expression, and then allowed to develop to the neural tube stage. Neural tubes are isolated by dissection and then are cultured, and growth cones on outgrowing neurites are imaged. In this article, we describe how to perform this method, the goal of which is to culture Xenopus laevis growth cones for subsequent high-resolution image analysis. While we provide the example of +TIP fusion protein EB1-GFP, this method can be applied to any number of proteins to elucidate their behaviors within the growth cone.  相似文献   
985.
We studied herbivory of two species of willows (Salix sericea and S. eriocephala) and their interspecific hybrids to test alternative hypotheses concerning the effects of hybridization on plant resistance. Individually marked plants were identified using morphological traits in the field and random amplified polymorphic DNA (RAPD) band analysis was used to verify the genetic status of many parental and hybrid plants. The desities of 12 herbivore species on plants in the field were compared between two parents and their F2-type hybrids. We found about equal support for the additive, dominance, and hybrid susceptibility hypotheses over 4 years. In one year, one species supported the hybrid resistance hypothesis. Guild membership was not a good predictor of similar responses of species to hybrid versus parental plants. There were marked differences in support for particular hypotheses among years for four herbivore species. This study demonstrates the diversity of responses of phytophages in response to interspecific hybridization, and indicates that year-to-year variation in relative resistance of hybrid plants can be important.  相似文献   
986.
Transposable elements (TE) are found in all eukaryotic genomes and play a significant role in their structure and functioning. The majority of mobile elements are silent in the genomes indicating the existence of cell control mechanisms of their activity. Establishment of immunity to TE is of great interest, but it cannot be studied directly and there are only few examples of present or recent active transpositions of mobile elements. G32, a Drosophila melanogaster strain, is characterized by the presence of large complex chromosomal aberration in the 3rd chromosome, active transpositions of gtwin in the past, and its stability at present. To address the question as to what had happened to the element while the cell took it under the control, we performed the detailed cytological and molecular analyses of gtwin’s structure and its distribution in G32. Two variants of gtwin were found, one of which is amplified in G32 despite the alteration of tRNA-primer binding site. This element is accumulated in the aberrant chromosome and associated with the inversions breakpoints. Gtwin copies are predominantly localized in euchromatic regions and at least three of them are situated in heterochromatin. One copy was found in the piRNA cluster that might have caused silencing of the element.  相似文献   
987.
Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K(+) channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this study we hypothesized that hyperoxia affects expression of Trek-1 in alveolar epithelial cells and that Trek-1 is involved in regulation of cell proliferation and cytokine secretion. We found gene expression of several K2P channels in mouse alveolar epithelial cells (MLE-12), and expression of Trek-1 was significantly downregulated in cultured cells and lungs of mice exposed to hyperoxia. Similarly, proliferation cell nuclear antigen (PCNA) and Cyclin D1 expression were downregulated by exposure to hyperoxia. We developed an MLE-12 cell line deficient in Trek-1 expression using shRNA and found that Trek-1 deficiency resulted in increased cell proliferation and upregulation of PCNA but not Cyclin D1. Furthermore, IL-6 and regulated on activation normal T-expressed and presumably secreted (RANTES) secretion was decreased in Trek-1-deficient cells, whereas release of monocyte chemoattractant protein-1 was increased. Release of KC/IL-8 was not affected by Trek-1 deficiency. Overall, deficiency of Trek-1 had a more pronounced effect on mediator secretion than exposure to hyperoxia. This is the first report suggesting that the K(+) channel Trek-1 could be involved in regulation of alveolar epithelial cell proliferation and cytokine secretion, but a direct association with hyperoxia-induced changes in Trek-1 levels remains elusive.  相似文献   
988.
NKG2D is a costimulatory receptor for human naive CD8+ T cells   总被引:12,自引:0,他引:12  
In humans, all alpha beta CD8+ T cells express NKG2D, but in mouse, it is only expressed by activated and memory CD8+ T cells. We purified human naive CD8+ T cells to show that NKG2D serves as a costimulatory receptor for TCR induced Ca2+ mobilization and proliferation. The resulting effector cells are skewed toward a type 1 phenotype and produce high levels of IFN-gamma and TNF-alpha. NKG2D ligands, MHC class I chain-related (MIC)A, MICB, and UL16-binding proteins are expressed on the proliferating cells and NKG2D is down-regulated. The addition of the homeostatic cytokines IL-7 and IL-15 to the culture medium not only enhances proliferation but also counteracts the down-regulation of NKG2D, more so than the addition of IL-2. These results indicate that NKG2D can regulate the priming of human naive CD8+ T cells, which may provide an alternative mechanism for potentiating and channeling the immune response.  相似文献   
989.
To investigate the expression of the endocannabinoid 1 and 2 receptors by human adipocyte cells of omental and subcutaneous fat tissue, as well as to determine whether these receptors are functional. The expression of CB1 and CB2 receptors on human adipocytes was analyzed by western blotting, immunohistology and immunocytology. We also investigated intracytoplasmic cyclic AMP level modulation following CB1 and CB2 receptor stimulation by an enzymatic immuno assay. All mature adipocytes, from visceral (epiploon) and subcutaneous fat tissue, express CB1 and CB2 on their plasma membranes. We also demonstrate in this study that adipocyte precursors (pre-adipocytes) express CB1 and CB2 on their plasma membranes and that both receptors are functional. Activation of CB1 increases intracytoplasmic cyclic AMP whilst CB2 activation leads to a cyclic AMP decrease. Here we demonstrate, for the first time, that adipocytes of human adipose tissue (mature adipocytes and pre-adipocytes) express functional plasma membrane CB1 and CB2 receptors. Their physiological role on the adipose tissue is not known. However, their major involvement in the physiology of other tissues leads us to suppose that they could play a significant role in the homeostasis of the energy balance and/or in the regulation of adipose tissue inflammation.  相似文献   
990.
Macrophage infiltration is a critical determinant of high-fat diet induced adipose tissue inflammation and insulin resistance. The precise mechanisms underpinning the initiation of macrophage recruitment and activation are unclear. Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, displays chemokine-like properties. Circulating MIF levels are elevated during obesity however its role in high-fat diet induced adipose inflammation and insulin resistance remains elusive. Wildtype and MIF−/− C57Bl\6J mice were fed chow or high-fat diet. Body weight and food intake was assessed. Glucose homeostasis was monitored by glucose and insulin tolerance tests. Adipose tissue macrophage recruitment and adipose tissue insulin sensitivity was evaluated. Cytokine secretion from stromal vascular fraction, adipose explants and bone marrow macrophages was measured. Inflammatory signature and insulin sensitivity of 3T3-L1-adipocytes co-cultured with wildtype and MIF−/− macrophage was quantified. Hepatic triacylglyceride levels were assessed. MIF−/− exhibited reduced weight gain. Age and weight-matched obese MIF−/− mice exhibited improved glucose homeostasis coincident with reduced adipose tissue M1 macrophage infiltration. Obese MIF−/− stromal vascular fraction secreted less TNFα and greater IL-10 compared to wildtype. Activation of JNK was impaired in obese MIF−/−adipose, concomitant with pAKT expression. 3T3-L1-adipocytes cultured with MIF−/− macrophages had reduced pro-inflammatory cytokine secretion and improved insulin sensitivity, effects which were also attained with MIF inhibitor ISO-1. MIF−/− liver exhibited reduced hepatic triacyglyceride accumulation, enhanced pAKT expression and reduced NFκB activation. MIF deficiency partially protects from high-fat diet induced insulin resistance by attenuating macrophage infiltration, ameliorating adipose inflammation, which improved adipocyte insulin resistance ex vivo. MIF represents a potential therapeutic target for treatment of high-fat diet induced insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号