首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1979篇
  免费   138篇
  2022年   25篇
  2021年   35篇
  2020年   26篇
  2019年   25篇
  2018年   33篇
  2017年   41篇
  2016年   56篇
  2015年   91篇
  2014年   96篇
  2013年   124篇
  2012年   132篇
  2011年   132篇
  2010年   91篇
  2009年   66篇
  2008年   89篇
  2007年   87篇
  2006年   72篇
  2005年   62篇
  2004年   64篇
  2003年   54篇
  2002年   44篇
  2001年   35篇
  2000年   28篇
  1999年   36篇
  1998年   19篇
  1997年   18篇
  1996年   18篇
  1995年   12篇
  1994年   11篇
  1993年   17篇
  1992年   17篇
  1991年   25篇
  1990年   25篇
  1989年   28篇
  1988年   19篇
  1987年   28篇
  1986年   29篇
  1985年   24篇
  1984年   13篇
  1982年   13篇
  1980年   11篇
  1979年   10篇
  1978年   15篇
  1977年   15篇
  1976年   18篇
  1974年   14篇
  1972年   10篇
  1971年   16篇
  1970年   15篇
  1966年   14篇
排序方式: 共有2117条查询结果,搜索用时 15 毫秒
111.
Grain size and weight are important components of a suite of yield‐related traits in crops. Here, we showed that the CRISPR‐Cas9 gene editing of TaGW7, a homolog of rice OsGW7 encoding a TONNEAU1‐recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homoeologs in the B and D genomes, we showed that mutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homoeologs coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double‐copy mutant showing larger effect than the respective single copy mutants. The TaGW7‐centered gene co‐expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co‐localization of TaGW7 with α‐ and β‐tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetraploid domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7‐associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR‐Cas9 system with cross‐species comparison can help to uncover the function of a gene fixed in wheat for allelic variants targeted by domestication selection and select targets for engineering new gene variants for crop improvement.  相似文献   
112.
Evidence for specific and direct bacterial product recognition through toll-like receptors (TLRs) has been emphasized recently. We analyzed lipopeptide analogues and enterobacterial lipopolysaccharide (eLPS) for their potential to activate cells through TLR2 and TLR4. Whereas bacterial protein palmitoylated at its N-terminal cysteine and N-terminal peptides derived thereof are known to induce TLR2-mediated cell activation, a synthetic acylhexapeptide mimicking a bacterial lipoprotein subpopulation for which N-terminal trimyristoylation is characteristic (Myr(3)CSK(4)) activated cells not only through TLR2 but also through TLR4. Conversely, highly purified eLPS triggered cell activation through overexpressed TLR2 in the absence of TLR4 expression if CD14 was coexpressed. Accordingly, TLR2(-/-) macrophages prepared upon gene targeting responded to Myr(3)CSK(4) challenge, whereas TLR2(-/-)/TLR4(d/d) cells were unresponsive. Through interferon-gamma (IFNgamma) priming, macrophages lacking expression of functional TLR4 and/or MD-2 acquired sensitivity to eLPS, whereas TLR2/TLR4 double deficient cells did not. Not only TLR2(-/-) mice but also TLR4(-/-) mice were resistant to Myr(3)CSK(4) challenge-induced fatal shock. d-Galactosamine-sensitized mice expressing defective TLR4 or lacking TLR4 expression acquired susceptibility to eLPS-driven toxemia upon IFNgamma priming, whereas double deficient mice did not. Immunization toward ovalbumin using Myr(3)CSK(4) as adjuvant was ineffective in TLR2(-/-)/TLR4(-/-) mice yet effective in wild-type, TLR2(-/-), or TLR4(-/-) mice as shown by analysis of ovalbumin-specific serum Ig concentration. A compound such as Myr(3)CSK(4) whose stimulatory activity is mediated by both TLR2 and TLR4 might constitute a preferable adjuvant. On the other hand, simultaneous blockage of both of the two TLRs might effectively inhibit infection-induced pathology.  相似文献   
113.
114.
Interleukin-2 (IL-2) is a potent molecule in cancer therapy. Clinical application, however, is limited due to its strong side effects during the treatment. We developed an IL-2 variant (IL-2v) immunocytokine to circumvent the drawbacks of the current IL-2 therapy. During the production of the IL-2v immunocytokine in Chinese hamster ovary (CHO) cells, molecules with fragmented IL-2v and therefore reduced cytokine activity can be observed. To control product fragmentation different production process conditions were investigated. By shifting temperature or pH after the cell growth phase to lower values, fragmented species can be reduced from 10% to 12% to about 4%. However, with the adopted process conditions, the effective titer is decreased concomitantly. Moreover, fermentation length and inoculation cell density are parameters to adjust fragmentation and effective titer. A suitable method for efficient process optimization is the design of experiment approach. With this procedure, novel optimal values for temperature, pH value, harvest day, and inoculation cell densities were proposed and tested subsequently. In comparison to the former process, the improved process reduces fragmentation by 66% while keeping the effective titer comparable. In summary, these findings will help to control fragmentation in CHO production processes of different IL-2v or IL-2 containing therapeutic proteins.  相似文献   
115.
Biological Trace Element Research - We analyzed cobalt (Co), chromium (Cr), and lead (Pb) concentrations in human semen and catalase CAT activity in seminal plasma and the effects of their...  相似文献   
116.
Regulation of immune cell activation in lymphocyte-bearing human tissues is a pivotal host function, and metabolites of arachidonic acid (prostaglandin E2 in particular) have been reported to serve this function at non-mucosal sites. However, it is unknown whether prostaglandin E2 is immunoregulatory for the large lymphocyte population in the lamina propria of intestine; whether low (nM) concentrations of prostaglandin E2 modulate immune responses occurring there; and whether adjacent inflammation per se abrogates prostaglandin E2's regulatory effects. To address these issues, intestine-derived lymphocytes and T hybridoma cells were assessed, T cell activation was monitored by release of independently quantitated lymphokines, and dose-response studies were performed over an 8-log prostaglandin E2concentration range. IL-3 release by normal intestinal lamina propria mononuclear cells was reduced (up to 78%) in a dose-dependent manner by prostaglandin E2, when present in as low a concentration as 10−10M. PGE2 also inhibited(by ≥ 60%) mucosal T lymphocytes' ability to destabilize the barrier function of human epithelial monolayers. Further, with an intestine-derived T lymphocyte hybridoma cell line, a prostaglandin E2 dose-dependent reduction in IL-3 and IL-2 (90 and 95%, respectively) was found; this was true for both mitogen- and antigen-driven T cell lymphokine release. Concomitant [3H] thymidine uptake studies suggested this was not due to a prostaglandin E2-induced reduction in T cell proliferation or viability. In contrast, cells from chronically inflamed intestinal mucosa were substantially less sensitive to prostaglandin E2, e.g., high concentrations (10−6 M) of prostaglandin E2 inhibited IL-3 release by only 41%. We conclude that prostaglandin E2 in nM concentrations is an important modulator of cytokine release from T lymphocytes derived from the gastrointestinal tract, and it may play a central role in regulation of lamina propria immunocyte populations residing there. © 1996 Wiley-Liss, Inc.  相似文献   
117.
Compared with other SARS-related coronaviruses (SARSr-CoVs), SARS-CoV-2 possesses a unique furin cleavage site (FCS) in its spike. This has stimulated discussion pertaining to the origin of SARS-CoV-2 because the FCS has been observed to be under strong selective pressure in humans and confers the enhanced ability to infect some cell types and induce cell–cell fusion. Furthermore, scientists have demonstrated interest in studying novel cleavage sites by introducing them into SARSr-CoVs. We review what is known about the SARS-CoV-2 FCS in the context of its pathogenesis, origin, and how future wildlife coronavirus sampling may alter the interpretation of existing data.  相似文献   
118.
SNAP-25 and its ubiquitous homolog SNAP-23 are members of the SNARE family of proteins that regulate membrane fusion during exocytosis. Although SNAP-23 has been shown to participate in a variety of intracellular transport processes, the structural domains of SNAP-23 that are required for its interaction with other SNAREs have not been determined. By employing deletion mutagenesis we found that deletion of the amino-terminal 18 amino acids of SNAP-23 (encoded in the first exon) dramatically inhibited binding of SNAP-23 to both the target SNARE syntaxin and the vesicle SNARE vesicle-associated membrane protein(VAMP). By contrast, deletion of the carboxyl-terminal 23 amino acids (encoded in the last exon) of SNAP-23 does not affect SNAP-23 binding to syntaxin but profoundly inhibits its binding to VAMP. To determine the functional relevance of the modular structure of SNAP-23, we overexpressed SNAP-23 in cells possessing the capacity to undergo regulated exocytosis. Expression of human SNAP-23 in a rat mast cell line significantly enhanced exocytosis, and this effect was not observed in transfectants expressing the carboxyl-terminal VAMP-binding mutant of SNAP-23. Despite considerable amino acid identity, we found that human SNAP-23 bound to SNAREs more efficiently than did rat SNAP-23. These data demonstrate that the introduction of a "better" SNARE binder into secretory cells augments exocytosis and defines the carboxyl terminus of SNAP-23 as an essential regulator of exocytosis in mast cells.  相似文献   
119.
Many different G protein-coupled receptors modulate the activity of Ca2+ and K+ channels in a variety of neuronal types. There are five known subtypes (M1-M5) of muscarinic acetylcholine receptors. Knockout mice lacking the M1, M2, or M4 subtypes are studied to determine which receptors mediate modulation of voltage-gated Ca2+ channels in mouse sympathetic neurons. In these cells, muscarinic agonists modulate N- and L-type Ca2+ channels and the M-type K+ channel through two distinct, G-protein mediated pathways. The fast and voltage-dependent pathway is lacking in the M2 receptor knockout mice. The slow and voltage-independent pathway is absent in the M1 receptor knockout mice. Neither pathway is affected in the M4 receptor knockout mice. Muscarinic modulation of the M current is absent in the M1 receptor knockout mice, and can be reconstituted in a heterologous expression system using cloned channels and M1 receptors. Our results using knockout mice are compared with pharmacological data in the rat.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号