首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1979篇
  免费   138篇
  2022年   25篇
  2021年   35篇
  2020年   26篇
  2019年   25篇
  2018年   33篇
  2017年   41篇
  2016年   56篇
  2015年   91篇
  2014年   96篇
  2013年   124篇
  2012年   132篇
  2011年   132篇
  2010年   91篇
  2009年   66篇
  2008年   89篇
  2007年   87篇
  2006年   72篇
  2005年   62篇
  2004年   64篇
  2003年   54篇
  2002年   44篇
  2001年   35篇
  2000年   28篇
  1999年   36篇
  1998年   19篇
  1997年   18篇
  1996年   18篇
  1995年   12篇
  1994年   11篇
  1993年   17篇
  1992年   17篇
  1991年   25篇
  1990年   25篇
  1989年   28篇
  1988年   19篇
  1987年   28篇
  1986年   29篇
  1985年   24篇
  1984年   13篇
  1982年   13篇
  1980年   11篇
  1979年   10篇
  1978年   15篇
  1977年   15篇
  1976年   18篇
  1974年   14篇
  1972年   10篇
  1971年   16篇
  1970年   15篇
  1966年   14篇
排序方式: 共有2117条查询结果,搜索用时 31 毫秒
101.
The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies.  相似文献   
102.
103.

Objective:

Obesity is a key factor in the development of the metabolic syndrome (MetS), which is associated with increased cardiometabolic risk. We investigated whether obesity classification by BMI and body fat percentage (BF%) influences cardiometabolic profile and dietary responsiveness in 486 MetS subjects (LIPGENE dietary intervention study).

Design and Methods:

Anthropometric measures, markers of inflammation and glucose metabolism, lipid profiles, adhesion molecules, and hemostatic factors were determined at baseline and after 12 weeks of four dietary interventions (high saturated fat (SFA), high monounsaturated fat (MUFA), and two low fat high complex carbohydrate (LFHCC) diets, one supplemented with long chain n‐3 polyunsaturated fatty acids (LC n‐3 PUFAs)).

Results:

About 39 and 87% of subjects classified as normal and overweight by BMI were obese according to their BF%. Individuals classified as obese by BMI (≥30 kg/m2) and BF% (≥25% (men) and ≥35% (women)) (OO, n = 284) had larger waist and hip measurements, higher BMI and were heavier (P < 0.001) than those classified as nonobese by BMI but obese by BF% (NOO, n = 92). OO individuals displayed a more proinflammatory (higher C reactive protein (CRP) and leptin), prothrombotic (higher plasminogen activator inhibitor‐1 (PAI‐1)), proatherogenic (higher leptin/adiponectin ratio) and more insulin resistant (higher HOMA‐IR) metabolic profile relative to the NOO group (P < 0.001). Interestingly, tumor necrosis factor‐α (TNF‐α) concentrations were lower post‐intervention in NOO individuals compared with OO subjects (P < 0.001).

Conclusions:

In conclusion, assessing BF% and BMI as part of a metabotype may help to identify individuals at greater cardiometabolic risk than BMI alone.  相似文献   
104.

Background

Enteroaggregative Escherichia coli (EAEC) is recognized as an emerging cause of persistent diarrhea and enteric disease worldwide. Mucosal immunity towards EAEC infections is incompletely understood due in part to the lack of appropriate animal models. This study presents a new mouse model and investigates the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the modulation of host responses to EAEC in nourished and malnourished mice.

Methods/Principal Findings

Wild-type and T cell-specific PPARγ null C57BL/6 mice were fed protein-deficient diets at weaning and challenged with 5×109cfu EAEC strain JM221 to measure colonic gene expression and immune responses to EAEC. Antigen-specific responses to E. coli antigens were measured in nourished and malnourished mice following infection and demonstrated the immunosuppressive effects of malnutrition at the cellular level. At the molecular level, both pharmacological blockade and deletion of PPARγ in T cells resulted in upregulation of TGF-β, IL-6, IL-17 and anti-microbial peptides, enhanced Th17 responses, fewer colonic lesions, faster clearance of EAEC, and improved recovery. The beneficial effects of PPARγ blockade on weight loss and EAEC clearance were abrogated by neutralizing IL-17 in vivo.

Conclusions

Our studies provide in vivo evidence supporting the beneficial role of mucosal innate and effector T cell responses on EAEC burden and suggest pharmacological blockade of PPARγ as a novel therapeutic intervention for EAEC infection.  相似文献   
105.

Introduction

The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS) patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes.

Method

Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i) fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii) T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations.

Results

Significant increases in global T1 values were observed in the thalamus (p = 0.038) and the putamen (p = 0.026) in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016) with no significant effect in white matter.

Conclusion

The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases.  相似文献   
106.

Background

The incidence of papillary thyroid carcinoma (PTC) has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid) act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.

Methods

Thyroid Stimulating Hormone Receptor (TSHR) was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin) were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm) was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.

Results

TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.

Conclusion

A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with fewer side effects and improved quality of life.  相似文献   
107.
Arthritogenic alphaviruses are emerging arthropod-borne viruses that occasionally cause sporadic to global outbreaks all over the world. Many environmental factors including xenobiotics have been identified as capable of influencing the spread, the susceptibility and the outcome of viral infection. Among them cadmium is a toxic non-essential heavy metal and a prevalent environmental contaminant. In the present study we evaluated the effect of cadmium exposure on alphavirus infection in vitro. We infected Human Embryonic Kidney (HEK) 293 cells in the presence of cadmium chloride (CdCl2) with Sindbis virus. Cell viability, apoptosis and viral growth were then examined. Our data show that effective doses of cadmium decreased the virus mediated-cell death by inhibition of apoptosis. Moreover, virus growth in HEK 293 cells was also reduced by CdCl2 treatment. Altogether our results demonstrate that cadmium triggers a protective response which renders HEK 293 cells resistant against Sindbis virus infection.  相似文献   
108.
109.
Responses to human cytomegalovirus (HCMV) infection are largely individual and cell type specific. We investigated molecular profiles in 2 primary cell cultures of human fibroblasts, which are highly or marginally sensitive to HCMV infection, respectively. We screened expression of genes and microRNAs (miRs) at the early (3 hours) stage of infection. To assess molecular pathway activation profiles, we applied bioinformatic algorithms OncoFinder and MiRImpact. In both cell types, pathway regulation properties at mRNA and miR levels were markedly different. Surprisingly, in the infected highly sensitive cells, we observed a “freeze” of miR expression profiles compared to uninfected controls. Our results evidence that in the sensitive cells, HCMV blocks intracellular regulation of microRNA expression already at the earliest stage of infection. These data suggest somewhat new functions for HCMV products and demonstrate dependence of miR expression arrest on the host-encoded factors.  相似文献   
110.
The multidisciplinarity of integrative taxonomy is particularly useful for clarifying the systematics of speciose groups that are poorly differentiated morphologically, and this approach can also illuminate their evolutionary history and biogeography. Here, we utilize it to examine the systematics and taxonomy of a newly recognized amphipod species, Gammarus hamaticornis n. sp., which belongs to a highly diverse genus of endemic freshwater crustaceans that show very limited morphological differentiation. Since this species is endemic to northern Dobrogea, a region at the northwestern Black Sea coast devoid of permafrost during the Last Glacial Maximum, we hypothesized that it survived in situ during the Quaternary climatic oscillations. We first examined the phylogenetic position of Gammarus hamaticornis n. sp. within the genus and then compared its morphology, phylogeography, distribution, and climatic niche with that of its sister species. Results indicate that G. hamaticornis n. sp. is most closely related to its widely distributed northern neighbor, G. kischineffensis, and a remarkable agreement was observed among morphological, multilocus coalescent and climatic analyses which supported the distinctiveness of both taxa. These apparently diverged during the Pliocene from a common ancestor that likely colonized freshwaters from the adjacent brackish basins of the shrinking Paratethys. The results indicate that G. hamaticornis n. sp. has persisted throughout the Pleistocene in northern Dobrogea, a hitherto hypothesized refugium confirmed for the first time with molecular genetic data. Due to its narrow geographical range, rarity in the local communities and highly fluctuating nature of the streams it inhabits, this species should be in the focus of future conservation priorities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号