首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   102篇
  国内免费   2篇
  2023年   9篇
  2022年   21篇
  2021年   33篇
  2020年   29篇
  2019年   20篇
  2018年   37篇
  2017年   37篇
  2016年   48篇
  2015年   53篇
  2014年   67篇
  2013年   84篇
  2012年   105篇
  2011年   97篇
  2010年   64篇
  2009年   45篇
  2008年   64篇
  2007年   67篇
  2006年   51篇
  2005年   50篇
  2004年   48篇
  2003年   33篇
  2002年   26篇
  2001年   12篇
  2000年   17篇
  1999年   15篇
  1998年   6篇
  1997年   10篇
  1996年   9篇
  1995年   5篇
  1993年   4篇
  1992年   8篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   12篇
  1987年   15篇
  1986年   4篇
  1985年   10篇
  1984年   9篇
  1983年   12篇
  1982年   4篇
  1981年   6篇
  1980年   8篇
  1977年   4篇
  1976年   4篇
  1973年   3篇
  1972年   3篇
  1970年   3篇
  1969年   7篇
  1966年   4篇
排序方式: 共有1327条查询结果,搜索用时 15 毫秒
131.
Genetic variation at the TERT-CLPTM1L locus at 5p15.33 is associated with susceptibility to several cancers, including epithelial ovarian cancer (EOC). We have carried out fine-mapping of this region in EOC which implicates an association with a single nucleotide polymorphism (SNP) within the TERT promoter. We demonstrate that the minor alleles at rs2736109, and at an additional TERT promoter SNP, rs2736108, are associated with decreased breast cancer risk, and that the combination of both SNPs substantially reduces TERT promoter activity.  相似文献   
132.
BACKGROUND: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. METHODOLOGY/PRINCIPAL FINDINGS: We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. CONCLUSION/RELEVANCE: This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.  相似文献   
133.

Background

Neuromuscular (NM) synaptogenesis is a tightly regulated process. We previously showed that in flies, Drosophila Nedd4 (dNedd4/dNedd4S) is required for proper NM synaptogenesis by promoting endocytosis of commissureless from the muscle surface, a pre-requisite step for muscle innervation. DNedd4 is an E3 ubiquitin ligase comprised of a C2-WW(x3)-Hect domain architecture, which includes several splice isoforms, the most prominent ones are dNedd4-short (dNedd4S) and dNedd4-long (dNedd4Lo).

Methodology/Principal Findings

We show here that while dNedd4S is essential for NM synaptogenesis, the dNedd4Lo isoform inhibits this process and causes lethality. Our results reveal that unlike dNedd4S, dNedd4Lo cannot rescue the lethality of dNedd4 null (DNedd4T121FS) flies. Moreover, overexpression of UAS-dNedd4Lo specifically in wildtype muscles leads to NM synaptogenesis defects, impaired locomotion and larval lethality. These negative effects of dNedd4Lo are ameliorated by deletion of two regions (N-terminus and Middle region) unique to this isoform, and by inactivating the catalytic activity of dNedd4Lo, suggesting that these unique regions, as well as catalytic activity, are responsible for the inhibitory effects of dNedd4Lo on synaptogenesis. In accord with these findings, we demonstrate by sqRT-PCR an increase in dNedd4S expression relative to the expression of dNedd4Lo during embryonic stages when synaptogenesis takes place.

Conclusion/Significance

Our studies demonstrate that splice isoforms of the same dNedd4 gene can lead to opposite effects on NM synaptogenesis.  相似文献   
134.
135.
Among the causes of premature ovarian failure (POF) two groups of factors are reported: factors which lead to decrease of follicular number and factors which stimulate follicular atresia. In the first group genetic factors are the most important whereas in the second: enzymatic autoimmunological, iatrogenic, toxins and infections are reported. In 1986 familiar POF on the background of long arm of chromosome X deletion was reported. Other chromosomes which are important for normal ovarian function are: chromosome 21 (AIRE gene), chromosome 11 (gene of beta FSH, ATM gene), chromosome 3 (gene responsible for BEPS syndrome) and chromosome 2 (genes of FSH and LH receptors). In this review the role of these genes and results of several epidemiological studies are reported.  相似文献   
136.
Stalled bacterial ribosomes are freed when they switch to the translation of transfer-messenger RNA (tmRNA). This process requires the tmRNA-binding and ribosome-binding cofactor SmpB, a beta-barrel protein with a protruding C-terminal tail of unresolved structure. Some plastid genomes encode tmRNA, but smpB genes have only been reported from bacteria. Here we identify smpB in the nuclear genomes of both a diatom and a red alga encoding a signal for import into the plastid, where mature SmpB could activate tmRNA. Diatom SmpB was active for tmRNA translation with bacterial components in vivo and in vitro, although less so than Escherichia coli SmpB. The tail-truncated diatom SmpB, the hypothetical product of a misspliced mRNA, was inactive in vivo. Tail-truncated E. coli SmpB was likewise inactive for tmRNA translation but was still able to bind ribosomes, and its affinity for tmRNA was only slightly diminished. This work suggests that SmpB is a universal cofactor of tmRNA. It also reveals a tail-dependent role for SmpB in tmRNA translation that supersedes a simple role of linking tmRNA to the ribosome, which the SmpB body alone could provide.  相似文献   
137.
Cathepsin D (CatD) is a lysosomal aspartic proteinase and plays an important role in the degradation of proteins and in apoptotic processes induced by oxidative stress, cytokines, and aging. All of these stimuli are potent inducers of endothelial cell apoptosis. Therefore, we investigated the role of CatD in endothelial cell apoptosis and determined the underlying mechanisms. Incubation with 100-500 microm H2O2 for 12 h induced apoptosis in endothelial cells. To determine a role for CatD, we co-incubated endothelial cells with the CatD inhibitor pepstatin A. Pepstatin A as well as genetic knock down of CatD abolished H2O2-induced apoptosis. In contrast, overexpression of CatD wild type but not a catalytically inactive mutant of CatD (CatDD295N) induced apoptosis under basal conditions. To gain insights into the underlying mechanisms, we investigated the effect of CatD on reactive oxygen species (ROS) formation. Indeed, knocking down CatD expression reduced H2O2-induced ROS formation and apoptosis. The major redox regulator in endothelial cells is thioredoxin-1 (Trx), which plays a crucial role in apoptosis inhibition. Thus, we hypothesized that CatD may alter Trx protein levels and thereby promote formation of ROS and apoptosis. Incubation with 100 microm H2O2 for 6 h decreased Trx protein levels, whereas Trx mRNA was not altered. H2O2-induced Trx degradation was inhibited by pepstatin A and genetic knock down of CatD but not by other protease inhibitors. Incubation of unstimulated cell lysates with recombinant CatD significantly reduced Trx protein levels in vitro, which was completely blocked by pepstatin A pre-incubation. Overexpression of CatD reduced Trx protein in cells. Moreover, H2O2 incubation led to a translocation of Trx to the lysosomes prior to the induction of apoptosis. Taken together, CatD induces apoptosis via degradation of Trx protein, which is an essential anti-apoptotic and reactive oxygen species scavenging protein in endothelial cells.  相似文献   
138.
Essential oils are one of the most valuable natural products. The price of special essential oils that can be purchased on the market strongly depends on the quality of the product. The quality, which depends on the quantitative and qualitative variation of different monoterpenes, varies with respect of the origin and the harvesting period. This contribution reports on a Raman spectroscopic study on the essential oil occurring in fennel. Cross-sections of fennel seed were investigated by use of Raman spectroscopy and Raman mapping to localize the essential oil and to analyze its chemical composition directly in the plant. Furthermore the practicability of a home-built mobile transportable Raman spectrometer to perform on-site measurements was successfully tested.  相似文献   
139.
The permeability of astomatous leaf cuticular membranes of Hedera helix L. was measured for uncharged hydrophilic (octanol/water partition coefficient log K(O/W) < or =0) and lipophilic compounds (log K(O/W) >0). The set of compounds included lipophilic plant protection agents, hydrophilic carbohydrates, and the volatile compounds water and ethanol. Plotting the mobility of the model compounds versus the molar volume resulted in a clear differentiation between a lipophilic and a hydrophilic pathway. The size selectivity of the lipophilic pathway was described by the free volume theory. The pronounced tortuosity of the diffusional path was caused by cuticular waxes, leading to an increase in permeance for the lipophilic compounds after wax extraction. The size selectivity of the hydrophilic pathway was described by hindered diffusion in narrow pores of molecular dimensions. A distinct increase in size selectivity was observed for hydrophilic compounds with a molar volume higher than 110 cm3 mol(-1). Correspondingly, the size distribution of passable hydrophilic pathways was interpreted as a normal distribution with a mean pore radius of 0.3 nm and a standard deviation of 0.02 nm. The increased permeance of the hydrophilic compounds by the removal of cuticular waxes was attributed to an increase in the porosity, a decrease in the tortuosity, and a widening of the pore size distribution. Cuticular transpiration resulted from the permeation of water across the hydrophilic pathway. The far-reaching implications of two parallel pathways for the establishment of correlations between cuticular structure, chemistry, and function are discussed.  相似文献   
140.
The utility of a two-photon optical fiber fluorescence probe (TPOFF) for sensing and quantifying tumor fluorescent signals was tested in vivo. Xenograft tumors were developed in athymic mice using MCA207 cells expressing green fluorescent protein (GFP). The TPOFF probe was able to detect ex vivo fluorescence from excised tumors containing as little as 0.3% GFP-expressing cells. TPOFF results were similar to both flow-cytometric analysis of tumor cells after isolation and suspension, and fluorescence determined by microscope images of cryosectioned tumors. TPOFF was then used to measure GFP fluorescence from tumors in live mice. The fiber probe detected fluorescently-labeled Herceptin antibody targeted to HER2-expressing tumors in severe combined immunodeficient mice. Dendrimer nanoparticles targeted by folic acid and having 6-TAMRA as a fluorescent probe were also used to label KB cell tumors in vivo. The fiber probe documented a fourfold increase in tumor fluorescence in animals that received the targeted dendrimer. These results suggest TPOFF can be used as a minimally invasive system for identifying tumor markers and monitoring drug therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号