首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5444篇
  免费   530篇
  国内免费   1篇
  5975篇
  2023年   28篇
  2022年   44篇
  2021年   85篇
  2020年   57篇
  2019年   84篇
  2018年   109篇
  2017年   68篇
  2016年   152篇
  2015年   223篇
  2014年   214篇
  2013年   333篇
  2012年   410篇
  2011年   401篇
  2010年   221篇
  2009年   237篇
  2008年   300篇
  2007年   322篇
  2006年   307篇
  2005年   307篇
  2004年   312篇
  2003年   235篇
  2002年   258篇
  2001年   61篇
  2000年   58篇
  1999年   70篇
  1998年   79篇
  1997年   53篇
  1996年   54篇
  1995年   51篇
  1994年   45篇
  1993年   43篇
  1992年   52篇
  1991年   39篇
  1990年   35篇
  1989年   44篇
  1988年   47篇
  1987年   44篇
  1986年   33篇
  1985年   45篇
  1984年   27篇
  1983年   28篇
  1982年   39篇
  1981年   34篇
  1980年   30篇
  1979年   33篇
  1978年   22篇
  1976年   16篇
  1975年   23篇
  1973年   16篇
  1972年   17篇
排序方式: 共有5975条查询结果,搜索用时 10 毫秒
31.
Subcellular organelles from castor bean (Ricinus communis) endosperm were isolated on discontinuous sucrose gradients from germinating seeds which were 1 to 7 days postimbibition. Marker enzyme activities of the organelles were measured (fumarase, catalase, and triose phosphate isomerase) and the homogeneity of the organelle fractions was examined by electron microscopy. Pyruvate dehydrogenase complex activity was measured only in the mitochondrial fraction and attempts to activate or release the enzyme from the proplastid were not successful. A pathway is proposed for the most efficient use of endosperm carbon for de novo fatty acid biosynthesis that does not require the presence of the pyruvate dehydrogenase complex in the proplastid to provide acetyl-coenzymeA.  相似文献   
32.
Allantoin and allantoic acid are the major forms of nitrogen transported from soybean nodules to other parts of the plant. Neither the pathway or the site of ureide synthesis has been demonstrated in root nodules.  相似文献   
33.
Nucleotide-metabolizing enzymes and lymphocyte differentiation   总被引:3,自引:0,他引:3  
Summary Inherited deficiencies of adenosine deaminase and purine nucleoside phosphorylase have been found to be associated with certain immunodeficiency syndromes which are characterized by deficiencies of mature peripheral lymphocytes. The immunodeficiency states associated with these enzyme deficiencies are thought to arise from blocks in lymphocyte differentiation. Deficiencies of these enzymes have profound and apparently selective effects on lymphocyte differention. Their discovery has focused attention on previously unknown relationships between purine nucleotide metabolism and lymphocyte development and function. In this article three aspects of nucleotide-metabolizing enzymes and lymphocyte differentiation will be discussed: 1) the distribution of the enzymes among lymphocyte populations at differing stages of differentiation; 2) the possible biochemical mechanisms which give rise to the immunodeficiencies; 3) the stages of lymphocyte differentiation which are affected by the enzyme deficiencies.  相似文献   
34.
The 1H, 13C, and 15N high field nuclear magnetic resonance spectra of the cyclic peptide viomycin have been fully assigned using homo- and heteronuclear double resonance experiments and pH effects. In addition it is shown how the two- and three-bond H-D isotope effects upon carbonyl resonances may assist in their assignment. The resistance to exchange with solvent water of the amide proton involved in the transannular hydrogen bond is observed directly in the 1H spectra, via the isotope effect on a carbonyl resonance in the 13C spectra, and via the one-bond 1H couppling in the 15N spectra.  相似文献   
35.
The arrangement of protein I in the outer membrane of Escherichia coli was investigated by cross-linking whole cells, isolated cell wall, protein-peptidoglycan complexes, and protein I released from peptidoglycan with NaCl. Both cleavable azide cross-linkers and imidoester reagents were used. The data presented suggest that protein I exists in the outer membrane as a trimer.  相似文献   
36.
37.
BackgroundThe epidemiology of childhood SARS-CoV-2 infection and COVID-19-related illness remains little studied in high-transmission tropical settings, partly due to the less severe clinical manifestations typically developed by children and the limited availability of diagnostic tests. To address this knowledge gap, we investigate the prevalence and predictors of SARS-CoV-2 infection (either symptomatic or not) and disease in 5 years-old Amazonian children.Methodology/Principal findingsWe retrospectively estimated SARS-CoV-2 attack rates and the proportion of infections leading to COVID-19-related illness among 660 participants in a population-based birth cohort study in the Juruá Valley, Amazonian Brazil. Children were physically examined, tested for SARS-CoV-2 IgG and IgM antibodies, and had a comprehensive health questionnaire administered during a follow-up visit at the age of 5 years carried out in January or June-July 2021. We found serological evidence of past SARS-CoV-2 infection in 297 (45.0%; 95% confidence interval [CI], 41.2–48.9%) of 660 cohort participants, but only 15 (5.1%; 95% CI, 2.9–8.2%) seropositive children had a prior medical diagnosis of COVID-19 reported by their mothers or guardians. The period prevalence of clinically apparent COVID-19, defined as the presence of specific antibodies plus one or more clinical symptoms suggestive of COVID-19 (cough, shortness of breath, and loss of taste or smell) reported by their mothers or guardians since the pandemic onset, was estimated at 7.3% (95% CI, 5.4–9.5%). Importantly, children from the poorest households and those with less educated mothers were significantly more likely to be seropositive, after controlling for potential confounders by mixed-effects multiple Poisson regression analysis. Likewise, the period prevalence of COVID-19 was 1.8-fold (95%, CI 1.2–2.6-fold) higher among cohort participants exposed to food insecurity and 3.0-fold (95% CI, 2.8–3.5-fold) higher among those born to non-White mothers. Finally, children exposed to household and family contacts who had COVID-19 were at an increased risk of being SARS-CoV-2 seropositive and–even more markedly–of having had clinically apparent COVID-19 by the age of 5 years.Conclusions/SignificanceChildhood SARS-CoV-2 infection and COVID-19-associated illness are substantially underdiagnosed and underreported in the Amazon. Children in the most socioeconomically vulnerable households are disproportionately affected by SARS-CoV-2 infection and disease.  相似文献   
38.
Background:The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system.Methods:We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals’ long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage.Results:Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 μg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01–1.12), 1.09 (95% CI 0.98–1.21) and 1.00 (95% CI 0.90–1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06–1.23), 1.30 (95% CI 1.12–1.50) and 1.18 (95% CI 1.02–1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively.Interpretation:Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.

By November 2021, COVID-19 had caused more than 5 million deaths globally1 and more than 29 400 in Canada.2 The clinical manifestations of SARS-CoV-2 infection range from being asymptomatic to multiple organ failure and death. Identifying risk factors for COVID-19 severity is important to better understand etiological mechanisms and identify populations to prioritize for screening, vaccination and medical treatment. Risk factors for severity of COVID-19 include male sex, older age, pre-existing medical conditions and being from racialized communities.35 More recently, ambient air pollution has been implicated as a potential driver of COVID-19 severity.610Long-term exposure to ambient air pollution, a major contributor to global disease burden,11 could increase the risk of severe COVID-19 outcomes by several mechanisms. Air pollutants can reduce individuals’ pulmonary immune responses and antimicrobial activities, boosting viral loads.8 Air pollution can also induce chronic inflammation and overexpression of the alveolar angiotensin-converting enzyme 2 (ACE) receptor,7 the key receptor that facilitates SARS-CoV-2 entry into cells.12,13 Exposure to air pollution contributes to chronic conditions, such as cardiovascular disease, that are associated with unfavourable COVID-19 prognosis, possibly owing to persistent immune activation and excessive amplification of cytokine development.10 Thus, greater exposure to long-term air pollution may lead to severe COVID-19 outcomes.Reports exist of positive associations between long-term exposure to particulate matter with diameters equal to or smaller than 2.5 or 10 μm (PM2.5 and PM10), ground-level ozone (O3) and nitrogen dioxide (NO2), and metrics of COVID-19 severity (e.g., mortality and case fatality rate).810 However, most studies to date have used ecological and cross-sectional designs, owing to limited access to individual data, which leads to ambiguity in interpreting the results, thus hindering their influence on policy. 6,14 Ecological designs do not allow for disentangling the relative impacts of air pollution on individual susceptibility to infection and disease severity.14 Residual confounding by factors such as population mobility and social interactions is also problematic. Therefore, a cohort study with data on individuals with SARS-CoV-2 is a more appropriate design.6,14 Studies that have used individual data were conducted in specific subpopulations15,16 or populations with few severe cases,17 or had limited data on individual exposure to air pollutants.18 In Canada, 1 ecological study found a positive association between long-term exposure to PM2.5 and COVID-19 incidence,19 but no published study has explored the association between air pollution and COVID-19 severity.We aimed to examine the associations between long-term exposure to 3 common air pollutants (PM2.5, NO2 and O3) and key indicators of COVID-19 severity, including hospital admission, intensive care unit (ICU) admission and death, using a large prospective cohort of people with confirmed SARS-CoV-2 infection in Ontario, Canada, in 2020. The air contaminants PM2.5, NO2 and O3 are regularly monitored by the Canadian government, and are key pollutants that are considered when setting air-quality policies. They originate from varying sources (NO2 is primarily emitted during combustion of fuel, O3 is primarily formed in air by chemical reactions of nitrogen oxides and volatile organic compounds, and PM2.5 can be emitted during combustion or formed by reactions of chemicals like sulphur dioxide and nitrogen oxides in air) and they may affect human health differently.20,21,22  相似文献   
39.
40.
Dudley A  McKinstry W  Thomas D  Best J  Jenkins A 《BioTechniques》2003,35(4):724-6, 728, 730 passim
The success of recombinant protein expression/purification in Escherichia coli depends on a high-fidelity system rendering purified proteins free of confounding contaminants such as endotoxin. Here we report on the expression and purification of a cryptic plasminogen-derived domain, kringle 5, which was previously reported to specifically inhibit endothelial cell growth and, therefore, angiogenesis. Using a histidine (HIS)-tag expression and Ni(+)-NTA agarose purification system identical to previous reports, we found that our purified recombinant kringle 5 did inhibit endothelial cell growth, but this activity could not be eradicated by heat denaturing or proteolysis of kringle 5 with various proteases. This led us to suspect the presence of a contaminant in the purified samples. Quantitative endotoxin testing using a limulus amoebocyte lysate assay revealed that all samples purified by Ni(+)-NTA agarose alone harbored high concentrations of endotoxin that could not be removed by additional purification on anion exchange chromatography. Finally, when kringle 5 was rendered endotoxin-free by purification on reverse phase high-performance liquid chromatography (HPLC), there was a complete loss of endothelial cell growth inhibitory activity. These results strongly suggest that endotoxin-free recombinant kringle 5 may not possess anti-angiogenic activity and demonstrates that, especially in angiogenesis type assays, endotoxin contamination can lead to a misinterpretation of results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号