首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3587篇
  免费   344篇
  2023年   13篇
  2022年   26篇
  2021年   77篇
  2020年   54篇
  2019年   72篇
  2018年   93篇
  2017年   68篇
  2016年   124篇
  2015年   179篇
  2014年   167篇
  2013年   242篇
  2012年   302篇
  2011年   291篇
  2010年   173篇
  2009年   182篇
  2008年   212篇
  2007年   213篇
  2006年   194篇
  2005年   197篇
  2004年   178篇
  2003年   149篇
  2002年   149篇
  2001年   51篇
  2000年   56篇
  1999年   40篇
  1998年   38篇
  1997年   27篇
  1996年   30篇
  1995年   21篇
  1994年   29篇
  1993年   20篇
  1992年   27篇
  1991年   21篇
  1990年   17篇
  1989年   11篇
  1988年   16篇
  1987年   21篇
  1986年   19篇
  1985年   24篇
  1984年   8篇
  1983年   13篇
  1982年   9篇
  1981年   14篇
  1980年   13篇
  1979年   12篇
  1978年   7篇
  1976年   7篇
  1975年   7篇
  1973年   4篇
  1969年   3篇
排序方式: 共有3931条查询结果,搜索用时 15 毫秒
131.
School start time influences sleep parameters. Differences between circadian sleep parameters on weekends and weekdays have been associated with obesity, sleep, and psychiatric disorders. Moreover, circadian rhythm dysregulation affects the secretion of some hormones, such as melatonin and cortisol. In the current study, we investigate the effect of school start time on cortisol and melatonin levels in a community sample of Brazilian children and adolescents. This was a cross-sectional study of 454 students (mean age, 12.81 ± 2.56 years; 58.6% female). From this sample, 80 participants were randomly selected for saliva collection to measure melatonin and cortisol levels. Circadian sleep parameters were assessed by self-reported sleep and wake up schedules and the Morningness–Eveningness Questionnaire. The outcomes, salivary melatonin and cortisol levels, were measured in morning, afternoon and night saliva samples, and behavior problems were assessed using the Child Behavior Checklist (CBCL). The main results revealed that morning school start time decreased the secretion of melatonin. Morning melatonin levels were significantly positively correlated with the sleep midpoint on weekdays and on weekends. Afternoon melatonin levels were positively correlated with the sleep midpoint on weekends in the morning school students. Conversely, in the afternoon school students, night melatonin levels were negatively correlated with the sleep midpoint on weekdays. Cortisol secretion did not correlate with circadian sleep parameters in any of the school time groups. In conclusion, school start time influences melatonin secretion, which correlated with circadian sleep parameters. This correlation depends on the presence of psychiatric symptoms. Our findings emphasize the importance of drawing attention to the influence of school start time on the circadian rhythm of children and adolescents.  相似文献   
132.
This article contributes first genome size assessments by flow cytometry for 16 species, 12 genera, and 3 tribes from family Asteraceae, mostly belonging to the Heliantheae alliance, an assembly of 13 tribes from subfamily Asteroideae with a large majority of its species in the New World. Most genome sizes are accompanied by their own chromosome counts, confirming in most cases, although not all, previous counts for the species, and revealing possible cases of unknown dysploidy or polyploidy for certain taxa. The data contribute to the pool of knowledge on genome size and chromosome numbers in the family Asteraceae and will further allow deeper studies and a better understanding on the role of dysploidy in the evolution of the Heliantheae alliance. However, we still lack data for tribes Chaenactideae, Neurolaeneae, Polymnieae, and Feddeeae (the latter, monospecific) to complete the alliance representation.  相似文献   
133.
Diversity and trophic structure of grain insect communities were examined in Olotillo, Nal‐Tel and Comiteco maize landraces cultivated within a milpa agroecosystem by Zapotec ethnic groups in Mexico. Higher insect diversity was expected in Olotillo, whose cultivation comprises a wide variety of agroecosystems, and low insect abundance in Nal‐Tel with small grains and thick testa. Forty Olotillo cobs were collected at low, medium and high elevations, and 40 each of Nal‐Tel at low elevation and Comiteco at high elevation. Cobs were monitored for 30 days under controlled laboratory conditions until all insects emerged. Thickness of testa of 400 grains from each landrace was measured. Community composition and trophic structure were described and standard diversity indices were estimated. A total of 9,708 insects, corresponding to five orders, 24 families and 36 species, were recorded, with six species not previously reported in this region. Insect guilds were composed of 70% phytophages, 22% parasitoids and 8% predators. Species richness was S = 27, 16 and 8 in Olotillo, Comiteco and Nal‐Tel, respectively. Nal‐Tel and Olotillo had the highest diversity index values (H′ = 1.32 and 1.2, respectively) and no significant differences; Comiteco had the lowest value (H′ = 0.65) and differed significantly from the other landraces. Comiteco and Olotillo, which have large grains and thin testa, showed higher insect abundance than Nal‐Tel, which has small grains and thick testa and showed lower abundance. Results support our hypotheses and highlight the role of traditional crop management in insect agrobiodiversity maintenance and conservation.  相似文献   
134.
We examined temporal changes in spatial patterns of submersed aquatic vegetation (SAV) in response to the restoration of geomorphic habitat in Navigation Pool 8 of the Upper Mississippi River from 1998 to 2016. The frequency of occurrence and species composition of SAV at sampling sites were spatially interpolated for each year to create annual maps. Linear models were fitted to temporal changes in SAV within each map pixel. The frequency of occurrence of SAV (across all species) increased over time in much of the impounded region of the pool, including areas near restored islands. However, impounded areas maintained a relatively consistent species composition over time, with species known to be tolerant of higher flow velocities (>0.10 m/second) and wind fetch distances (>1,000 m) (e.g. Vallisneria americana) being most abundant. In contrast, areas protected by newly constructed islands transitioned from V. americana to species found in other protected backwater habitats and known to be intolerant of high flow velocities and wind fetch distances (e.g. Ceratophyllum demersum). The results suggest that previously reported improvements in water clarity may have improved growing conditions for all SAV species, especially in the lower impounded portion of the pool, while island restoration created more backwater‐like habitats and facilitated changes in species composition. Assessing changes in SAV occurrence alone offers only a partial view of local‐scale river restoration (e.g. island building), while analyses of species composition are likely to be more indicative of the types of changes (i.e. reduced flow velocity and wind fetch) associated with restoring geomorphic habitat.  相似文献   
135.
In this work, we report the use of refractive index (RI) tomography for quantitative analysis of unstained DH82 cell line infected with Leishmania infantum. The cell RI is reconstructed by using a modality of optical diffraction tomography technique that employs partially coherent illumination, thus enabling inherent compatibility with conventional wide‐field microscopes. The experimental results demonstrate that the cell dry mass concentration (DMC) obtained from the RI allows for reliable detection and quantitative characterization of the infection and its temporal evolution. The RI provides important insight for studying morphological changes, particularly membrane blebbing linked to an apoptosis (cell death) process induced by the disease. Moreover, the results evidence that infected DH82 cells exhibit a higher DMC than healthy samples. These findings open up promising perspectives for clinical diagnosis of Leishmania.  相似文献   
136.
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.  相似文献   
137.
In recent years, giant unilamellar vesicles (GUVs) have become objects of intense scrutiny by chemists, biologists, and physicists who are interested in the many aspects of biological membranes. In particular, this "cell size" model system allows direct visualization of particular membrane-related phenomena at the level of single vesicles using fluorescence microscopy-related techniques. However, this model system lacks two relevant features with respect to biological membranes: 1), the conventional preparation of GUVs currently requires very low salt concentration, thus precluding experimentation under physiological conditions, and 2), the model system lacks membrane compositional asymmetry. Here we show for first time that GUVs can be prepared using a new protocol based on the electroformation method either from native membranes or organic lipid mixtures at physiological ionic strength. Additionally, for the GUVs composed of native membranes, we show that membrane proteins and glycosphingolipids preserve their natural orientation after electroformation. We anticipate our result to be important to revisit a vast variety of findings performed with GUVs under low- or no-salt conditions. These studies, which include results on artificial cell assembly, membrane mechanical properties, lipid domain formation, partition of membrane proteins into lipid domains, DNA-lipid interactions, and activity of interfacial enzymes, are likely to be affected by the amount of salt present in the solution.  相似文献   
138.
To better understand how ceramide modulates the biophysical properties of the membrane, the interactions between palmitoyl-ceramide (PCer) and palmitoyl-sphingomyelin (PSM) were studied in the presence of the fluid phospholipid palmitoyl-oleoyl-phosphatidylcholine (POPC) in membrane model systems. The use of two fluorescent membrane probes distinctly sensitive to lipid phases allowed a thorough biophysical characterization of the ternary system. In these mixtures, PCer recruits POPC and PSM in the fluid phase to form extremely ordered and compact gel domains. Gel domain formation by low PCer mol fraction (up to 12 mol %) is enhanced by physiological PSM levels (approximately 20-30 mol % total lipid). For higher PSM content, a three-phase situation, consisting of fluid (POPC-rich)/gel (PSM-rich)/gel (PCer-rich) coexistence, is clearly shown. To determine the fraction of each phase a quantitative method was developed. This allowed establishing the complete ternary phase diagram, which helps to predict PCer-rich gel domain formation and explains its enhancement through PSM/PCer interactions.  相似文献   
139.
Neural crest cells (NCCs) are essential components of the sympathetic nervous system, skin, craniofacial skeleton, and aortic arch. It has been known for many years that perturbation of migration, proliferation, and/or differentiation of these cells leads to birth defects such as cleft palate and persistent truncus arteriosus (PTA). Previously, we had shown that disruption of the platelet-derived growth factor receptor (PDGFR) alpha in NCCs resulted in defects in craniofacial and aortic arch development, the latter with variable penetrance. Because we observed ventricular septal defects in embryos that are null for the PDGFRbeta, we hypothesized that both PDGF receptors are involved in NCC formation. Here, we show that both receptors are expressed in cardiac NCCs and that the combined loss of the PDGFRalpha and PDGFRbeta in NCCs resulted in NCC-related heart abnormalities, including PTA and a ventricular septal defect (VSD). Using NCC lineage tracing, we observed that loss of PDGF receptor signaling resulted in reduced NCCs in the conotruncus region, leading to defects in aortic arch septation. These results indicate that while PDGFRalpha plays a predominant role in NCC development, the PDGFRbeta is expressed by and functions in cardiac NCCs. Combined PDGF receptor signaling is required for sufficient recruitment of cardiac NCCs into the conotruncal region and for formation of the aortico-pulmonary and ventricular septum.  相似文献   
140.
The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to preventing the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by the necessity of reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, increases morphological diversity, and decreases the developmental stability of repeated characters. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine the role of HSP90 as a central interface between organism, development, and environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号