首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2937篇
  免费   244篇
  3181篇
  2023年   16篇
  2022年   36篇
  2021年   63篇
  2020年   38篇
  2019年   55篇
  2018年   75篇
  2017年   44篇
  2016年   106篇
  2015年   156篇
  2014年   138篇
  2013年   212篇
  2012年   241篇
  2011年   242篇
  2010年   141篇
  2009年   140篇
  2008年   175篇
  2007年   174篇
  2006年   153篇
  2005年   164篇
  2004年   147篇
  2003年   111篇
  2002年   135篇
  2001年   26篇
  2000年   24篇
  1999年   25篇
  1998年   33篇
  1997年   17篇
  1996年   18篇
  1995年   13篇
  1994年   21篇
  1993年   13篇
  1992年   16篇
  1991年   12篇
  1990年   10篇
  1989年   8篇
  1988年   14篇
  1987年   19篇
  1986年   9篇
  1985年   19篇
  1984年   15篇
  1983年   10篇
  1982年   16篇
  1981年   11篇
  1980年   10篇
  1979年   11篇
  1978年   6篇
  1976年   7篇
  1975年   8篇
  1973年   4篇
  1966年   3篇
排序方式: 共有3181条查询结果,搜索用时 15 毫秒
141.
Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.  相似文献   
142.
The new 2,3‐secoaromadendrane 1 , together with the known compounds plagiochilines A and M ( 2 and 3 , resp.), fusicogigantone A ( 4 ), and 1,4‐dimethylazulene ( 5 ) were isolated from an Argentine collection of the liverwort Plagiochila bursata. Structures were elucidated by extensive 1D‐ and 2D‐NMR studies. Compounds 2 and 4 , incorporated to the larval diet at 100 μg per g of diet, reduced the larval growth of Spodoptera frugiperda (Lepidoptera: Noctuidae) by 66±29% and 25±8% and produced 55 and 75% larval mortality at early instars and 20 and 25% pupal mortality, respectively. Treatment with compound 2 also produced abdomen and wing malformation in adults leading to impossibility to mate.  相似文献   
143.
The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.  相似文献   
144.
GTRAP3-18 interacts with and reduces the activity of the neuronal specific Na(+)/K(+) glutamate transporter, EAAC1 both in vitro and in vivo. GTRAP3-18 and the related isoform, JM4, are distant relatives of the Rab GTPase-interacting factor PRA1, and share a topology of four transmembrane domains and cytosolic termini. GTRAP3-18 and JM4 are resident endoplasmic reticulum (ER) proteins. The physiological role of GTRAP3-18 is poorly understood. We demonstrate for the first time that GTRAP3-18 is a regulator of ER protein trafficking. Expression of GTRAP3-18 delays the ER exit of EAAC1, as well as other members of the excitatory amino acid transporter family. GTRAP3-18 uses hydrophobic domain interactions in the ER membrane to self-associate and cytoplasmic interactions at the C terminus to regulate trafficking. The features of GTRAP3-18 activity are consistent with recent phylogenic sequence analyses suggesting GTRAP3-18 and JM4 be reclassified as mammalian isoforms of the yeast protein family Yip, Yip6b, and Yip6a, respectively.  相似文献   
145.
Appropriate dosing of coumarins is difficult to establish, due to significant inter-individual variability in the dose required to obtain stable anticoagulation. Several genetic and other clinical factors have been associated with the coumarins dose, and some pharmacogenetic-guided dosing algorithms for warfarin and acenocoumarol have been developed for mixed populations. We recruited 147 patients with thromboembolic disease who were on stable doses and with an international normalized ratio (INR) between 2 and 3. We ascertained the influence of clinical and genetic variables on the stable acenocoumarol dose by multiple linear regression analysis in a derivation cohort (DC; n = 117) and developed an algorithm for dosing that included clinical factors (age, body mass index and concomitant drugs) and genetic variations of VKORC1, CYP2C9, CYP4F2 and APOE. For purposes of comparison, a model including only clinical data was created. The clinical factors explained 22% of the dose variability, which increased to 60.6% when pharmacogenetic information was included (p<0.001); CYP4F2 and APOE variants explained 4.9% of this variability. The mean absolute error of the predicted acenocoumarol dose (mg/week) obtained with the pharmacogenetic algorithm was 3.63 vs. 5.08 mg/week with the clinical algorithm (95% CI: 0.88 to 2.04). In the testing cohort (n = 30), clinical factors explained a mere 7% of the dose variability, compared to 39% explained by the pharmacogenetic algorithm. Considering a more clinically relevant parameter, the pharmacogenetic algorithm correctly predicted the real stable dose in 59.8% of the cases (DC) vs. only 37.6% predicted by the clinical algorithm (95% CI: 10 to 35). Therefore the number of patients needed to genotype to avoid one over- or under-dosing was estimated to be 5.  相似文献   
146.
A fluorimetric microassay that uses a redox dye to determine the viability of the flagellate Trichomonas vaginalis has been optimised to provide a more sensitive method to evaluate potential trichomonacidal compounds. Resazurin has been used in recent years to test drugs against different parasites, including trichomonadid protozoa; however, the reproducibility of these resazurin-based methods in our laboratory has been limited because the flagellate culture medium spontaneously reduces the resazurin. The objective of this work was to refine the fluorimetric microassay method previously developed by other research groups to reduce the fluorescence background generated by the media and increase the sensitivity of the screening assay. The experimental conditions, time of incubation, resazurin concentration and media used in the microtitre plates were adjusted. Different drug sensitivity studies against T. vaginalis were developed using the 5-nitroimidazole reference drugs, new 5-nitroindazolinones and 5-nitroindazole synthetic derivatives. Haemocytometer count results were compared with the resazurin assay using a 10% solution of 3 mM resazurin dissolved in phosphate buffered saline with glucose (1 mg/mL). The fluorimetric assay and the haemocytometer counts resulted in similar percentages of trichomonacidal activity in all the experiments, demonstrating that the fluorimetric microtitre assay has the necessary accuracy for high-throughput screening of new drugs against T. vaginalis.  相似文献   
147.
In this work, several features during the wedge sole larval development have been described. The newly hatched larva presented an acidophilic yolk with some oil drops. The digestive tract began to differentiate at 1 DAH, with a loop being discernible. The pancreas and liver were completely formed at 2 DAH, the former showing its typical basophilic acinar structure and acidophilic zymogen granules. The first supranuclear vesicles in enterocytes were seen at 3 DAH. At 4 DAH, yolk reserves were completely exhausted, the number of oesophagus and intestine mucous cells increased, and the heart was differentiated into four chambers: the venous sinus, atrium, ventricle, and arterious bulb. The development was fast and almost all organs were differentiated at 2 DAH. It is important to emphasize that gastric glands were not detected, a factor that should be considered when deciding diet formulation and feeding strategies for the rearing of this species.  相似文献   
148.
The formation of cartilage from stem cells during development is a complex process which is regulated by both local growth factors and biomechanical cues, and results in the differentiation of chondrocytes into a range of subtypes in specific regions of the tissue. In fetal development cartilage also acts as a precursor scaffold for many bones, and mineralization of this cartilaginous bone precursor occurs through the process of endochondral ossification. In the endochondral formation of bones during fetal development the interplay between cell signalling, growth factors, and biomechanics regulates the formation of load bearing bone, in addition to the joint capsule containing articular cartilage and synovium, generating complex, functional joints from a single precursor anlagen. These joint tissues are subsequently prone to degeneration in adult life and have poor regenerative capabilities, and so understanding how they are created during development may provide useful insights into therapies for diseases, such as osteoarthritis, and restoring bone and cartilage lost in adulthood. Of particular interest is how these tissues regenerate in the mechanically dynamic environment of a living joint, and so experiments performed using 3D models of cartilage development and endochondral ossification are proving insightful. In this review, we discuss some of the interesting models of cartilage development, such as the chick femur which can be observed in ovo, or isolated at a specific developmental stage and cultured organotypically in vitro. Biomaterial and hydrogel‐based strategies which have emerged from regenerative medicine are also covered, allowing researchers to make informed choices on the characteristics of the materials used for both original research and clinical translation. In all of these models, we illustrate the essential importance of mechanical forces and mechanotransduction as a regulator of cell behavior and ultimate structural function in cartilage. Birth Defects Research (Part C) 105:19–33, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
149.
Rhabdomyosarcoma (RMS), a tumor of skeletal muscle origin, is the most common sarcoma of childhood. Despite multidrug chemotherapy regimens, surgical intervention, and radiation treatment, outcomes remain poor, especially in advanced disease, and novel therapies are needed for the treatment of these aggressive malignancies. Genetically engineered oncolytic viruses, such as herpes simplex virus-1 (HSV), are currently being explored as treatments for pediatric tumors. M002, an oncolytic HSV, has both copies of the γ134.5 gene deleted, enabling replication in tumor cells but thwarting infection of normal, postmitotic cells. We hypothesized that M002 would infect human RMS tumor cells and lead to decreased tumor cell survival in vitro and impede tumor growth in vivo. In the current study, we demonstrated that M002 could infect, replicate in, and decrease cell survival in both embryonal (ERMS) and alveolar rhabdomyosarcoma (ARMS) cells. Additionally, M002 reduced xenograft tumor growth and increased animal survival in both ARMS and ERMS. Most importantly, we showed for the first time that repeated dosing of oncolytic virus coupled with low-dose radiation provided improved tumor response in RMS. These findings provide support for the clinical investigation of oncolytic HSV in pediatric RMS.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号