首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3369篇
  免费   287篇
  3656篇
  2023年   19篇
  2022年   42篇
  2021年   77篇
  2020年   48篇
  2019年   60篇
  2018年   83篇
  2017年   58篇
  2016年   113篇
  2015年   180篇
  2014年   163篇
  2013年   248篇
  2012年   272篇
  2011年   276篇
  2010年   161篇
  2009年   158篇
  2008年   195篇
  2007年   211篇
  2006年   175篇
  2005年   183篇
  2004年   158篇
  2003年   118篇
  2002年   142篇
  2001年   30篇
  2000年   30篇
  1999年   36篇
  1998年   37篇
  1997年   22篇
  1996年   22篇
  1995年   17篇
  1994年   23篇
  1993年   20篇
  1992年   24篇
  1991年   19篇
  1990年   19篇
  1989年   11篇
  1988年   14篇
  1987年   13篇
  1986年   13篇
  1985年   19篇
  1984年   11篇
  1983年   19篇
  1982年   17篇
  1981年   13篇
  1980年   15篇
  1979年   16篇
  1978年   6篇
  1976年   8篇
  1975年   9篇
  1974年   5篇
  1973年   5篇
排序方式: 共有3656条查询结果,搜索用时 15 毫秒
91.
Plasmids are mobile genetic elements that play a key role in microbial ecology and evolution by mediating horizontal transfer of important genes, such as antimicrobial resistance genes. Many microbial genomes have been sequenced by short read sequencers and have resulted in a mix of contigs that derive from plasmids or chromosomes. New tools that accurately identify plasmids are needed to elucidate new plasmid-borne genes of high biological importance. We have developed Deeplasmid, a deep learning tool for distinguishing plasmids from bacterial chromosomes based on the DNA sequence and its encoded biological data. It requires as input only assembled sequences generated by any sequencing platform and assembly algorithm and its runtime scales linearly with the number of assembled sequences. Deeplasmid achieves an AUC–ROC of over 89%, and it was more accurate than five other plasmid classification methods. Finally, as a proof of concept, we used Deeplasmid to predict new plasmids in the fish pathogen Yersinia ruckeri ATCC 29473 that has no annotated plasmids. Deeplasmid predicted with high reliability that a long assembled contig is part of a plasmid. Using long read sequencing we indeed validated the existence of a 102 kb long plasmid, demonstrating Deeplasmid''s ability to detect novel plasmids.  相似文献   
92.
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.

Precise spatial and temporal characterization of cytokinin (CK) responses reveals the function of the CK biosynthesis gene ISOPENTENYLTRANSFERASE 3 during nodule development in Medicago truncatula.  相似文献   
93.
Treadmilling protein filaments perform essential cellular functions by growing from one end while shrinking from the other, driven by nucleotide hydrolysis. Bacterial cell division relies on the primitive tubulin homolog FtsZ, a target for antibiotic discovery that assembles into single treadmilling filaments that hydrolyse GTP at an active site formed upon subunit association. We determined high-resolution filament structures of FtsZ from the pathogen Staphylococcus aureus in complex with different nucleotide analogs and cations, including mimetics of the ground and transition states of catalysis. Together with mutational and biochemical analyses, our structures reveal interactions made by the GTP γ-phosphate and Mg2+ at the subunit interface, a K+ ion stabilizing loop T7 for co-catalysis, new roles of key residues at the active site and a nearby crosstalk area, and rearrangements of a dynamic water shell bridging adjacent subunits upon GTP hydrolysis. We propose a mechanistic model that integrates nucleotide hydrolysis signaling with assembly-associated conformational changes and filament treadmilling. Equivalent assembly mechanisms may apply to more complex tubulin and actin cytomotive filaments that share analogous features with FtsZ.

Bacterial cell division critically relies on the tubulin homolog FtsZ, which assembles into filaments that treadmill, fuelled by GTP hydrolysis. This structural and biochemical study of FtsZ from Staphylocuccus aureus reveals the mechanism of GTP hydrolysis and its connection with filament dynamics.  相似文献   
94.
We studied the release of salbutamol and ketoprofen enantiomers from HPMC K100M matrices containing two types of cellulose derivatives: cellulose tris (3,5-dimethylphenylcarbamate) and cellulose tris (2,3-dichlorophenylcarbamate), chiral excipients used as stationary phases for liquid chromatography. These matrices provided an extended release of both drugs. Ketoprofen release from formulations elaborated with cellulose tris (2,3-dichlorophenylcarbamate) was by anomalous transport, because the value of n (release exponent of the diffusion equation) ranged between 0.60-0.68, whereas for all other formulations the value of exponent n ranged from 0.50-0.54. The drug thus diffuses through the matrix and is released following a quasi-Fickian diffusion mechanism (stereoselective process). The matrices preferentially retained R-salbutamol and S-ketoprofen and cellulose tris (3,5-dimethylphenylcarbamate) showed more capacity of chiral discrimination for both drugs than cellulose tris (2,3-dichlorophenylcarbamate). Moreover, we observed that stereoselectivity is dependent on the amount of chiral excipient in the formulation. Diffusion tests confirmed the chiral interaction between drugs and cellulose derivatives observed in the dissolution assays except for matrices elaborated with ketoprofen and cellulose tris (2,3-dichlorophenylcarbamate), where the low stereoselectivity observed with the matrices is due to the presence of HPMC K100M. We conclude that the inclusion of these cellulose derivatives in HPMC matrices does not result in a relevant stereoselectivity with respect to the two drugs studied.  相似文献   
95.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   
96.
We compared the coenological information of the only Italian population of Malcolmia littorea (L.) R. Br. with published phytosociological relevés, including ones of this species, throughout its European range. With the aim of highlighting the main climatic features influencing the distribution patterns of M. littorea, we integrated coenological data with some climatic variables and considered major drivers for plant distribution at the European scale. Finally, we analysed the population extent of M. littorea in Italy, in order to assess its conservation status at regional level. The DCA analysis, performed on a matrix 139 relevés × 183 species, separated the relevés according to their floristic composition, showing a geographic gradient from Portugal to Mediterranean coasts, until Italy; with Mediterranean relevés clearly separated from Atlantic ones as well. Along the beach-inland gradient, the analysis highlights that the species is typical of fixed dunes habitats (more inland, mainly stabilised dunes), although in the Atlantic it can also be found in mobile dunes. The analysis of climatic variables in relation to M. littorea distribution, suggested that the species is sensitive to low winter temperature and to summer drought. The only Italian population of M. littorea is subjected to many threats, due to its small dimensions (<1 ha), isolation from the rest of its distribution area, that ranges from Portugal to France (until the Camargue region) and intensive human disturbances. Using both field and remote sensing information, we showed a considerable decrease of the occupied surface in Italy, leading us to suggest that the IUCN threat category of M. littorea in Italy should be reassessed from endangered to critically endangered.  相似文献   
97.
Activation of the caspase cascade is a pivotal step in apoptosis and can occur via death adaptor-mediated homo-oligomerization of initiator procaspases. Here we show that c-FLIP(L), a protease-deficient caspase homolog widely regarded as an apoptosis inhibitor, is enriched in the CD95 death-inducing signaling complex (DISC) and potently promotes procaspase-8 activation through hetero-dimerization. c-FLIP(L) exerts its effect through its protease-like domain, which associates efficiently with the procaspase-8 protease domain and induces the enzymatic activity of the zymogen. Ectopic expression of c-FLIP(L) at physiologically relevant levels enhances procaspase-8 processing in the CD95 DISC and promotes apoptosis, while a decrease of c-FLIP(L) expression results in inhibition of apoptosis. c-FLIP(L) acts as an apoptosis inhibitor only at high ectopic expression levels. Thus, c-FLIP(L) defines a novel type of caspase regulator, distinct from the death adaptors, that can either promote or inhibit apoptosis.  相似文献   
98.
Glutaredoxins (Grx) are small (approximately 12kDa) proteins which catalyze thiol disulfide oxidoreductions involving glutathione (GSH) and disulfides in proteins or small molecules. Here, we present data which demonstrate the ability of glutaredoxins to catalyze the reduction of oxidized glutathione (GSSG) by dihydrolipoamide (DHL), an important biological redox catalyst and synthetic antioxidant. We have designed a new assay method to quantify the rate of reduction of GSSG and other disulfides by reduced lipoamide and have tested a set of eight recombinant Grx from human, rat, yeast, and E. coli. Lipoamide dependent activity is highest with the large atypical E. coli Grx2 (k(cat)=3.235 min(-1)) and lowest for human mitochondrial Grx2a (k(cat)=96 min(-1)) covering a wider range than k(cat) for the standard reduction of hydroxyethyldisulfide (HED) by GSH (290-2.851 min(-1)). The lipoamide/HED activity ratio was highest for yeast Grx2 (1.25) and E. coli Grx2 and lowest for E. coli Grx1 (0.13). These results suggest a new role for Grxs as ancillary proteins that could shunt reducing equivalents from main catabolic pathways to recycling of GSSG via a lipoyl group, thus serving biochemical functions which involve GSH but without NAD(P)H consumption.  相似文献   
99.
118 strains of heterotrophic microorganisms were isolated from goat cheese produced domestically in the IV Region of Northern Chile (Serene, Ovalle, and Illapel) and sold in supermarkets in Valparaíso, Chile. The results of 89 phenotypic tests were numerically analyzed against 17 reference strains, using the simple matching coefficient (SSM). Thirteen phena were found at a 78% similarity level. Five of them (A, B, C, D, and E) were assigned to the family Enterobacteriaceae, phenon F was identified as belonging to the genus Aeromonas and strains of phenon G were assigned to the genus Acinetobacter. The other phena were identified as being members of the genera Bacillus (H, I, and J), Staphylococcus (K), Enterococcus (L), and Micrococcus (M). Approximately 19% of the isolates were Escherichia coli and 27%, Staphylococcus aureus. Received: 20 February 2001 / Accepted: 12 April 2001  相似文献   
100.
The canonical Wnt signaling pathway is a master cell regulator involved in CD8+ T cell proliferation and differentiation. In human CD8+ T cells, this pathway induces differentiation into memory cells or a “stem cell memory like” population, which is preferentially present in cord blood. To better understand the role of canonical Wnt signals in neonatal or adult blood, we compared the proteins associated with β-catenin, in nonstimulated and Wnt3a-stimulated human neonatal and adult naive CD8+ T cells. Differentially recruited proteins established different complexes in adult and neonatal cells. In the former, β-catenin-associated proteins were linked to cell signaling and immunological functions, whereas those of neonates were linked to proliferation and metabolism. Wnt3a stimulation led to the recruitment and overexpression of Wnt11 in adult cells and Wnt5a in neonatal cells, suggesting a differential connexion with planar polarity and Wnt/Ca2+ noncanonical pathways, respectively. The chromatin immunoprecipitation polymerase chain reaction β-catenin was recruited to a higher level on the promoters of cell renewal genes in neonatal cells and of differentiation genes in those of adults. We found a preferential association of β-catenin with CBP in neonatal cells and with p300 in the adult samples, which could be involved in a higher self-renewal capacity of the neonatal cells and memory commitment in those of adults. Altogether, our results show that different proteins associated with β-catenin during Wnt3a activation mediate a differential response of neonatal and adult human CD8+ T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号