首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4388篇
  免费   399篇
  国内免费   6篇
  2023年   34篇
  2022年   75篇
  2021年   131篇
  2020年   87篇
  2019年   109篇
  2018年   107篇
  2017年   102篇
  2016年   136篇
  2015年   221篇
  2014年   246篇
  2013年   300篇
  2012年   335篇
  2011年   348篇
  2010年   206篇
  2009年   172篇
  2008年   255篇
  2007年   208篇
  2006年   190篇
  2005年   187篇
  2004年   162篇
  2003年   160篇
  2002年   139篇
  2001年   58篇
  2000年   35篇
  1999年   56篇
  1998年   38篇
  1997年   32篇
  1996年   26篇
  1995年   26篇
  1994年   20篇
  1993年   19篇
  1992年   14篇
  1991年   18篇
  1990年   17篇
  1989年   19篇
  1988年   25篇
  1987年   16篇
  1986年   24篇
  1985年   17篇
  1984年   24篇
  1983年   23篇
  1982年   37篇
  1981年   25篇
  1980年   22篇
  1979年   24篇
  1978年   18篇
  1977年   20篇
  1973年   18篇
  1972年   18篇
  1971年   13篇
排序方式: 共有4793条查询结果,搜索用时 15 毫秒
51.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   
52.
Analysis of a new antibacterial agent, Ro 23-9424 (I), in plasma has been complicated by the fact that its metabolite, fleroxacin (II), is formed not only in vivo, but also nonenzymatically by the hydrolysis of the ester bond of I. In order to minimize sample preparation time and possible hydrolysis during sample preparation, a high-performance liquid chromatographic procedure was developed which features direct injection of plasma and multidimensional chromatography. The first dimension size-exclusion separation allows plasma proteins to elute with the column void volume. The second dimension reversed-phase column provides a high-resolution separation dependent upon the hydrophobicity of the sample species. With a 5-μl injection, the limit of quantitation of the method is 0.35 μg/ml for I and 0.27 μg/ml for II. The method was used to determine steady state plasma vs. time profiles for I and II from 750 mg i.v. doses of I administered twice daily.  相似文献   
53.
54.
Successful protected area networks must represent biodiversity across taxonomic groups. However, too often plant species are overlooked in conservation planning, and the resulting protected areas may, as a result, fail to encompass the most important sites for plant diversity. The Mozambique Tropical Important Plant Areas project sought to promote the conservation of Mozambique's flora through the identification of Important Plant Areas (IPAs). Here, we use the Weighted Endemism including Global Endangerment (WEGE) index to identify the richest areas for rare and endemic plants in Mozambique and subsequently evaluate how well represented these hotspots are within the current protected area and IPA networks. We also examine the congruence between IPA and protected areas to identify opportunities for strengthening the conservation of plants in Mozambique. We found that high WEGE scores, representing areas rich in endemic/near-endemic and threatened species, predict the presence of IPAs in Mozambique, but do not predict the presence of protected areas. We also find that there is limited overlap between IPAs and protected areas in Mozambique. We demonstrate how IPAs could be an important tool for ensuring priority sites for plant diversity are included within protected area network expansions, particularly following the adoption of the “30 by 30” target agreed within the post-2020 Convention on Biological Diversity framework, with great potential for this method to be replicated elsewhere in the global tropics.  相似文献   
55.
Summary A buffer system consisting of 50 mM Tris-HCl-TRIZMA base plus 10 mM EDTA was used to rapidly dissolve gellan gels used for maintaining transformed carrot root cultures. The optimum conditions of pH 7.5 in the presence of 10 mM EDTA for dissolving gellan were first worked out on a model test system containing 0.4% gellan, 0.025% MgSO4·7H2O, and blue dye. The conditions were then tested on gellan gels (0.2% gellan plus nutrients) containing carrot roots. This gel dissolution system was rapid (18 to 20 min), did not require heating, and could also be efficiently performed at 4 °C. Furthermore, the buffer system used for gel dissolution is a standard one used for plant cell fractionation studies.  相似文献   
56.
There is an unmet need for delivery platforms that realize the full potential of next-generation nucleic acid therapeutics. The in vivo usefulness of current delivery systems is limited by numerous weaknesses, including poor targeting specificity, inefficient access to target cell cytoplasm, immune activation, off-target effects, small therapeutic windows, limited genetic encoding and cargo capacity, and manufacturing challenges. Here we characterize the safety and efficacy of a delivery platform comprising engineered live, tissue-targeting, non-pathogenic bacteria (Escherichia coli SVC1) for intracellular cargo delivery. SVC1 bacteria are engineered to specifically bind to epithelial cells via a surface-expressed targeting ligand, to allow escape of their cargo from the phagosome, and to have minimal immunogenicity. We describe SVC1's ability to deliver short hairpin RNA (shRNA), localized SVC1 administration to various tissues, and its minimal immunogenicity. To validate the therapeutic potential of SVC1, we used it to deliver influenza-targeting antiviral shRNAs to respiratory tissues in vivo. These data are the first to establish the safety and efficacy of this bacteria-based delivery platform for use in multiple tissue types and as an antiviral in the mammalian respiratory tract. We expect that this optimized delivery platform will enable a variety of advanced therapeutic approaches.  相似文献   
57.
58.
Summary The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b0,+ -like and y+L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b0,+-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary active transport mechanism. The rBAT gene is mainly expressed in the outer stripe of the outer medulla of the kidney and in the mucosa of the small intestine. The protein localizes to the microvilli of the proximal straight tubules (S3 segment) of the nephron and the mucosa of the small intestine. All this suggested the participation of rBAT in a high-affinity reabsorption system of cystine and dibasic amino acids in kidney and intestine, and indicated rBAT (named SLC3A1 in Gene Data Bank) as a good candidate gene for cystinuria. This is an inherited aminoaciduria due to defective renal and intestinal reabsorption of cystine and dibasic amino acids. The poor solubility of cystine causes the formation of renal cystine calculi. Mutational analysis of the rBAT gene of patients with cystinuria is revealing a growing number (~20) of cystinuria-specific mutations, including missense, nonsense, deletions and insertions. Mutations M467T (substitution of methionine 467 residue for threonine) and R270X (stop codon at arginine residue 270) represent approximately half of the cystinuric chromosomes where mutations have been found. Mutation M467T reduces transport activity of rBAT in oocytes. All this demonstrates that mutations in the rBAT gene cause cystinuria.Three types of cystinuria (types, I, II and III) have been described on the basis of the genetic, biochemical and clinical manifestations of the disease. Type I cystinuria has a complete recessive inheritance; type I heterozygotes are totally silent. In contrast, type II and III heterozygotes show, respectively, high or moderate hyperaminoaciduria of cystine and dibasic amino acids. Type III homozygotes show moderate, if any, alteration of intestinal absorption of cystine and dibasic amino acids; type II homozygotes clearly show defective intestinal absorption of these amino acids. To date, all the rBAT cystinuria-specific mutations we have found are associated with type I cystinuria (~70% of the chromosomes studied) but not to types II or III. This strongly suggests genetic heterogeneity for cystinuria. Genetic linkage analysis with markers of the genomic region of rBAT in chromosome 2 (G band 2p16.3) and intragenic markers of rBAT have demonstrated genetic heterogeneity for cystinuria; the rBAT gene is linked to type I cystinuria, but not to type III. Biochemical, genetic and clinical studies are needed to identify the additional cystinuria genes; a low-affinity cystine reabsortion system and the putative light subunit of rBAT are additional candidate genes for cystinuria.  相似文献   
59.
Fermentative and aerobic metabolism in Rhizobium etli.   总被引:1,自引:1,他引:0       下载免费PDF全文
Strains of Rhizobium etli, Rhizobium meliloti, and Rhizobium tropici decreased their capacity to grow after successive subcultures in minimal medium, with a pattern characteristic for each species. During the growth of R. etli CE 3 in minimal medium (MM), a fermentation-like response was apparent: the O2 content was reduced and, simultaneously, organic acids and amino acids were excreted and poly-beta-hydroxybutyrate (PHB) was accumulated. Some of the organic acids excreted into the medium were tricarboxylic acid (TCA) cycle intermediates, and, concomitantly, the activities of several TCA cycle and auxiliary enzymes decreased substantially or became undetectable. Optimal and sustained growth and a low PHB content were found in R. etli CE 3 when it was grown in MM inoculated at a low cell density with O2 maintained at 20% or with the addition of supplements that have an effect on the supply of substrates for the TCA cycle. In the presence of supplements such as biotin or thiamine, no amino acids were excreted and the organic acids already excreted into the medium were later reutilized. Levels of enzyme activities in cells from supplemented cultures indicated that carbon flux through the TCA cycle was maintained, which did not happen in MM. It is proposed that the fermentative state in Rhizobium species is triggered by a cell density signal that results in the regulation of some of the enzymes responsible for the flux of carbon through the TCA cycle and that this in turn determines how much carbon is available for the synthesis and accumulation of PHB. The fermentative state of free-living Rhizobium species may be closely related to the metabolism that these bacteria express during symbiosis.  相似文献   
60.
Obtusifoliol 14β-demethylase from Sorghum bicolor (L.) Moench has been cloned using a gene-specific probe generated using PCR primers designed from an internal 14 amino acid sequence. The sequence identifies sorghum obtusifoliol 14α-demethylase as a cytochrome P450 and it is assigned to the CYP51 family together with the sterol 14α-demethylases from fungi and mammals. The presence of highly conserved regions in the amino acid sequences, analogous substrates and the same metabolic role demonstrate that the sterol 14α-demethylases are orthologous enzymes. The sterol 14α-demethylases catalyse an essential step in sterol biosynthesis as evidenced by the absence of a 14α-methyl group in all known functional sterols. A functional sorghum obtusifoliol 14α-demethylase was expressed at high levels in Escherichia coli and purified using an efficient method based on temperature-induced Triton X-114 phase partitioning. The recombinant purified enzyme produced a type I spectrum with obtusifoliol as substrate. Reconstitution of purified recombinant enzyme with sorghum NADPH—cytochrome P450 reductase in dilaurylphosphatidylcholine micelles confirms that obtusifoliol 14α-demethylase catalyses the 14α-demethylation of obtusifoliol to 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol as evidenced by GC—MS. The isolation of a cDNA clone encoding the plant sterol 14α-demethylase, combined with the previously isolated cDNA clones for fungal and mammalian sterol 14α-demethylases, provides an important tool in the rational design of specific inhibitors towards the individual sterol 14α-demethylases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号