首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3533篇
  免费   288篇
  国内免费   6篇
  2023年   28篇
  2022年   69篇
  2021年   116篇
  2020年   75篇
  2019年   92篇
  2018年   80篇
  2017年   78篇
  2016年   109篇
  2015年   177篇
  2014年   196篇
  2013年   240篇
  2012年   280篇
  2011年   289篇
  2010年   177篇
  2009年   145篇
  2008年   208篇
  2007年   175篇
  2006年   163篇
  2005年   153篇
  2004年   126篇
  2003年   129篇
  2002年   106篇
  2001年   35篇
  2000年   15篇
  1999年   33篇
  1998年   29篇
  1997年   20篇
  1996年   19篇
  1995年   20篇
  1994年   18篇
  1993年   18篇
  1992年   9篇
  1991年   12篇
  1988年   14篇
  1986年   13篇
  1985年   10篇
  1984年   16篇
  1983年   14篇
  1982年   28篇
  1981年   19篇
  1980年   16篇
  1979年   18篇
  1978年   11篇
  1977年   12篇
  1973年   13篇
  1972年   14篇
  1971年   9篇
  1969年   8篇
  1967年   8篇
  1960年   8篇
排序方式: 共有3827条查询结果,搜索用时 31 毫秒
221.
We determined that rats fed a liquid diet containing ethanol (36% of calories) for 6 wk had decreased (P < 0.05) net vectorial fluid transport and increased (P < 0.05) bidirectional protein permeability across the alveolar epithelium in vivo compared with rats fed a control diet. However, both groups increased (P < 0.05) fluid transport in response to epinephrine (10(-5) M) stimulation, indicating that transcellular sodium transport was intact. In parallel, type II cells isolated from ethanol-fed rats and cultured for 8 days formed a more permeable monolayer as reflected by increased (P < 0.05) leak of [(14)C]inulin. However, type II cells from ethanol-fed rats had more sodium-permeant channels in their apical membranes than type II cells isolated from control-fed rats, consistent with the preserved response to epinephrine in vivo. Finally, the alveolar epithelium of ethanol-fed rats supplemented with L-2-oxothiaxolidine-4-carboxylate (Procysteine), a glutathione precursor, had the same (P < 0.05) net vectorial fluid transport and bidirectional protein permeability in vivo and permeability to [(14)C]inulin in vitro as control-fed rats. We conclude that chronic ethanol ingestion via glutathione deficiency increases alveolar epithelial intercellular permeability and, despite preserved or even enhanced transcellular sodium transport, renders the alveolar epithelium susceptible to acute edematous injury.  相似文献   
222.
A filtration flow-through design was used to develop the rapid immunodetection of Escherichia coli. Polyclonal anti-E. coli IgG was conjugated to small, 0.8 Blue latex beads. Cells were mixed with conjugated beads in the presence of anti-E. coli monoclonal IgM. The suspension was then filtered through a 5 nitrocellulose membrane. The cell-containing complexes were effectively collected on the filter, forming a blue spot. The method produced reliable detection of E. coli at a concentration of 105 cells ml–1, which is a current benchmark figure for urinary tract infection (UTI) diagnosis.  相似文献   
223.
Membrane fusion and budding are key steps in the life cycle of all enveloped viruses. Semliki Forest virus (SFV) is an enveloped alphavirus that requires cellular membrane cholesterol for both membrane fusion and efficient exit of progeny virus from infected cells. We selected an SFV mutant, srf-3, that was strikingly independent of cholesterol for growth. This phenotype was conferred by a single amino acid change in the E1 spike protein subunit, proline 226 to serine, that increased the cholesterol independence of both srf-3 fusion and exit. The srf-3 mutant emphasizes the relationship between the role of cholesterol in membrane fusion and virus exit, and most significantly, identifies a novel spike protein region involved in the virus cholesterol requirement.  相似文献   
224.
Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the α-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient.Bacteria capable of mineralizing 2,4-dichlorophenoxyacetic acid (2,4-D), a commonly used herbicide, are found in many different phylogenetic groups (2, 3, 7, 11, 22, 23). Evidence suggests that numerous variants of 2,4-D catabolic genes exist and that catabolic operons consist of a near-random mixing of these variants (7). Interspecies gene transfer is a well-documented phenomenon (13), and horizontal gene transfer of the 2,4-D-degrading plasmid pJP4 has been shown (3, 5). However, not all 2,4-D catabolic operons are found on plasmids (10, 11, 16, 20). The extent to which other 2,4-D genes have been exchanged in nature is unknown. The aim of this research was to assess the role of horizontal gene transfer in the evolution of 2,4-D-degrading strains. This article summarizes the results of two aspects of this work—the study of the transfer of the entire 2,4-D pathway by using standard mating experiments and a phylogenetic study of the tfdA gene. The tfdA gene codes for an α-ketoglutarate-dependent 2,4-D dioxygenase which converts 2,4-D into 2,4-dichlorophenol and glyoxylate (6). This 861-bp gene was first sequenced from Ralstonia eutropha JMP134 (19). Two more tfdA genes were cloned from chromosomal locations in Burkholderia strain RASC and Burkholderia strain TFD6 (16, 20). These proved to be identical to each other and 78.5% similar to the original. An alignment of the two variants allowed conserved areas to be identified and primers to be designed for the amplification of tfdA-like genes from other sources (24). Sequence analysis of putative tfdA fragments and the small-subunit ribosomal DNA (SSU rDNA) of the strains carrying them allowed us to construct phylogenies of the genes and their hosts and to look for congruency between them.

Mating experiments.

A collection of 2,4-D degraders containing 15 unique strains as determined by genomic fingerprinting (7) was used as a source of donors in a series of mating experiments (Table (Table1).1). Burkholderia cepacia D5, lacking the ability to grow on 2,4-D and not hybridizing to any tfd genes, was used as a recipient in mating experiments. Strain D5 contains neomycin phosphotransferase genes (nptII) carried on transposon Tn5 and is resistant to 50 μg each of kanamycin, carbenicillin, and bacitracin per ml. All of the 2,4-D strains used were sensitive to these antibiotics. Filter matings were performed with a donor-to-recipient ratio of 1:10. Colonies which grew on selective medium (500 ppm of 2,4-D in mineral salts agar [MMO] [23] including 50 μg of kanamycin, carbenicillin, and bacitracin per ml) were subjected to further tests. Their ability to catabolize 2,4-D was tested in liquid medium (same composition as that described above).

TABLE 1

2,4-D-degrading strains, geographic origins, and GenBank accession numbers
StrainGenBank accession no. (SSU rDNA)OriginMost similar to genus and/or speciesaTransferbtfdA typecGenBank accession no. (tfdA gene)Reference or source
JMP134AF049542AustraliaRalstonia eutropha+IM167303
EML1549AF049546OregonBurkholderia sp.+I2
TFD39AF049539SaskatchewanBurkholderia sp.+IU4319723
K712AF049543MichiganBurkholderia sp.+IU4327611
TFD9AF049537SaskatchewanAlcaligenes xylosoxidans+IU4327623
TFD41AF049541MichiganRalstonia eutropha+I23
TFD38AF049540MichiganRalstonia eutropha+NDc23
TFD23AF049536MichiganRhodoferax fermentans+IU4327623
RASCAF049544OregonBurkholderia sp.(+)IIU257172
TFD6AF049546MichiganBurkholderia sp.II23
TFD2AF049545MichiganBurkholderia sp.II23
TFD31AF049536SaskatchewanRhodoferax fermentansIII23
B6-9AF049538OntarioRhodoferax fermentansNDIIIU431969
I-18U22836OregonHalomonas sp.NDIIIU2249915
K1443AF049531MichiganSphingomonas sp.d11
2,4-D1AF049535MontanaSphingomonas sp.R. Sanford
B6-5AF049533OntarioSphingomonas sp.ND9
B6-10AF049534OntarioSphingomonas sp.ND9
EML146AF049532OregonSphingomonas sp.2
M1AF049530French PolynesiaRhodospeudomonas sp.NDR. Fulthorpe
Open in a separate windowaThe generus and/or species most similar to the strain is given based on similarities of SSU rDNA sequences. bSymbols: +, able to transfer 2,4-D degradation to B. cepacia D5; (+), able to transfer at very low frequency; −, no transfer detected. cND, not determined. d—, no amplificate was obtained. The disappearance of 2,4-D from the culture medium was monitored by high-performance liquid chromatography. Cells were removed by centrifugation, and the supernatant was filtered through 0.2-μm-pore-size filters. These samples were then analyzed on a Lichrosorb Rp-18 column (Anspec Co., Ann Arbor, Mich.) with 60% methanol–40% 0.1% H3PO4 as the eluant. 2,4-D was detected by measuring light absorption at 230 nm. The presence of tfd genes was detected by hybridizing colony blots with a DNA probe derived from the entire pJP4 plasmid. The identity of the colonies was confirmed by probing with the nptII gene of Tn5 (found in B. cepacia D5). Probes were labeled with random hexanucleotides incorporating [32P]dCTP (3,000 Ci/mmol; New England Nuclear, Boston, Mass.). Hybridizations were done under high-stringency conditions by using 50% formamide and Denhardt’s solution (18) at 42°C. Of the 15 unique strains tested, 9 transferred 2,4-D degradation abilities to D5. This transfer was confirmed by hybridization with pJP4 for eight of these strains. B. cepacia RASC could transfer degradative abilities, but neither it nor the transconjugant hybridized to the pJP4 probe. Work subsequent to this study has confirmed that the genes carried by RASC do not hybridize to those found on pJP4 under high-stringency conditions (7).

Phylogenetic analyses.

Total genomic DNA was isolated from 20 unique 2,4-D-degrading strains (including all 15 used for mating experiments) grown on 500 ppm of 2,4-D mineral salts medium amended with 50 ppm of yeast extract. SSU rDNA was amplified by using fD1 and rD1 as primers (25). Putative tfdA fragments were amplified by using primers TVU and TVL as previously described (24). PCR products were purified with a Gene Clean kit (Bio 101, La Jolla, Calif.). Sequencing was done with an Applied Biosystems model 373A automatic sequencer (Perkin-Elmer Cetus) by using fluorescently labeled dye termination at the Michigan State University Sequencing Facility. The sequencing primer used for SSU rDNA fragments was 519R (5′ GTA TTA CCG CGG CTG CTG G-3′). For tfdA fragments, the sequencing primers were the same as the amplification primers. GenBank accession numbers for these sequences are given in Table Table11.The SSU rDNA sequences were compared to sequences in GenBank by using the Basic Local Alignment Search Tool (BLAST) (1), and those strains with the highest maximal segment pair scores were retrieved from GenBank and included in the phylogenetic analysis. Sequences were aligned manually with the software SeqEd (Applied Biosystems) and with MacClade (14). Sites where nucleotides were not resolved for all sequences were deleted from the alignment, as were those nucleotides corresponding to the small loop in this region that is absent in the alpha subgroup of the class Proteobacteria. These deletions left 283 unambiguous sites for the construction of the SSU rDNA phylogenies. Phylogenetic trees were constructed by using the neighbor-joining analysis of pairwise Jukes-Cantor distances (4), and the topology was confirmed by using the maximum parsimony method PAUP (21). Desulfomonile tiedjei of the δ-Proteobacteria was used as an outgroup. Bootstrap analysis based on 100 replicates was used to place confidence estimates on the tree. Only bootstrap values of greater than 50 were used.

2,4-D degrader diversity.

The 2,4-D degraders in this study were distributed throughout the alpha, beta, and gamma subgroups of the Proteobacteria (Fig. (Fig.1).1). The lack of representation of gram-positive bacteria is likely a reflection of isolation methods, not of the lack of gram-positive 2,4-D degraders. The majority of these strains were members of the beta subgroup of Proteobacteria, five of which were most closely related to the genus Burkholderia, having at least 92% sequence similarity with each other. Three were closely related to Rhodoferax fermentans (close to the class Comamonadaceae), three were related to Ralstonia eutropha, and one was related to Alcaligenes xylosoxidans. TFD39 falls outside any clear cluster. One member of the γ-Proteobacteria, strain I-18, a haloalkaliphile, was found to be closely related to the salt-loving genus Halomonas (15). The remaining six strains all clustered in the alpha branch of Proteobacteria (Fig. (Fig.1).1). Of this subgroup, five were most closely related to the genus Sphingomonas. One member of the α-Proteobacteria, strain M1, which is the most oligotrophic and slow growing of all the strains used in this study, is 97% similar to Rhodopseudomonas palustris. The character of strain M1 correlates well with its phylogenetic placement near the slow-growing genus Bradyrhizobium. Open in a separate windowFIG. 1Neighbor-joining dendrogram (Jukes-Cantor distances) of SSU rDNA from 2,4-D-degrading bacteria (indicated in boldface type) and reference strains (indicated in italic type). Class I (•), class II (▴), and class III (■) types of tfdA genes are indicated. Bootstrap confidence limits (percentages) are indicated above each branch. Scale bar represents a Jukes-Cantor distance of 0.01.

tfdA gene fragments.

tfdA gene fragments were successfully amplified and sequenced from 10 strains of β-Proteobacteria and 1 strain of γ-Protobacteria. None of the strains from the α-Proteobacteria gave any amplificates with these primers. These 313 contiguous nucleotides were aligned with additional tfdA sequences from JMP134 and from strain RASC (Fig. (Fig.2).2). Three distinct classes of tfdA gene sequences with slight variations in each class were found. Class I included fragments from JMP134, TFD39, TFD23, K712, and TFD9 that differed from each other by 2 bp at the most. Class I tfdA genes are probably plasmid encoded. All strains with a class I tfdA gene examined so far contained broad-host-range, self-transmissible plasmids containing 2,4-D genes (2, 3, 11, 17). All of the strains with a class I tfdA gene were able to transfer the 2,4-D phenotype in the mating studies reported above. The class II tfdA sequences included identical fragments amplified from RASC, TFD6, and TFD2 which were 76% similar to those in class I. Class III included identical fragments from strains TFD31, B6-9, and I-18 which were 77% similar to class I genes and 80% similar to class II genes. Both class II and III tfdA genes differed from each other and from class I genes in the same nine sites corresponding to the third base pair of the codons. The tfdA phylogenetic tree is a simple one, with three distinct branches that are incongruent with the SSU rDNA-derived phylogeny (Fig. (Fig.3).3). Class I tfdA sequences were found in Burkholderia-like strains, in strains related to the Comamonas-Rhodoferax group, and in the Ralstonia-Acaligenes group, all in the β-Proteobacteria. Class II sequences are less widely distributed, found only in Burkholderia-like branches. However, even in this subgroup, this tfdA variant is found in strains that differ by 7% at the SSU rDNA level (RASC and TFD2). However, the class III sequences were most interesting, being found both in the Comamonas-Rhodoferax group and in a strain of the γ-Proteobacteria, I-18, strains that differ by 24% at the SSU rDNA level. Class III genes have since been found in a collection of randomly isolated non-2,4-D degraders, including gram-positive bacilli, as well as in various gram-negative bacteria, even though the gene is not expressed (10). Open in a separate windowFIG. 2Alignment of 313 nucleotides of internal fragments of tfdA genes from representative strains. Nucleotides identical to tfdA from pJP4 are represented by periods.Open in a separate windowFIG. 3Phylogenetic incongruency of tfdA genes and SSU rDNA from diverse 2,4-D-degrading bacteria. Dendrograms for tfdA and SSU rDNA are indicated. Shading indicates the type of tfdA sequence, either class I, II, or III. Note that branch lengths are not drawn to scale.An interesting result was the detection of two different tfdA gene variants in sibling strains. TFD23 and TFD31 are identical at the ribosomal gene level, but one harbors a class I gene and the other harbors a class III gene. Similarly, TFD6 and EML159 are rRNA siblings that carry a class II and class I gene, respectively.None of the α-Proteobacteria yielded a PCR product when amplified with the conserved tfdA primers. This finding complements our observation that none of these bacteria hybridized to the tfdA gene, even under conditions of low stringency, indicating that any tfdA-like genes in the α-Proteobacteria are likely to be more divergent from the ones sequenced here (7, 11). In addition, none of the Sphingomonas strains in the study hybridized with a whole pJP4 probe, and similarly, no Sphingomonas strains scored positive for transfer of 2,4-D-degrading ability to recipient B. cepacia D5. Together these results suggest a reduced gene flow between members of the α- and β- or γ-Proteobacteria or poor gene expression of β- or γ-derived genes by α-Proteobacteria. Although plasmid pJP4 is a broad-host-range plasmid and has been known to transfer to α-Proteobacteria such as Rhizobium and Agrobacterium species and to γ-Proteobacteria such as Pseudomonas putida, Pseudomonas fluorescens, and Pseudomonas aeruginosa, the 2,4-D pathway is not expressed in these strains of the α- or γ-Proteobacteria (3). Phylogenetically limited expression of plasmid-borne 3-chlorobenzoate-degradative genes has also been noted for the pseudomonads (8). Subsequent studies have found divergent but related sequences for the tfdB and tfdC genes in 2,4-D-degrading Sphingomonas strains (7, 12, 24).With the exceptions of the minor differences within the class I pJP4-like tfdA sequences, there were no intermediate tfdA sequences. The most likely explanation of this is that the rate of horizontal transfer of the tfd genes is high relative to the rate at which mutations can accumulate. Examination of sequences of tfdA genes from a greater variety of organisms may turn up more intermediate variation.  相似文献   
225.
 Seven-iron ferredoxins from the thermoacidophilic archaea Acidianus ambivalens, A. infernus, Metalosphaera prunae and Sulfolobus metallicus were extensively characterised, allowing study of their expression under aerobic and anaerobic growth conditions as well as the putative role in thermal stability of a recently described zinc centre. The archaeon S. metallicus was found to express, under the same growth conditions, two ferredoxins in almost identical amounts, a novelty among Archaea. Most interestingly, these two ferredoxins differ at the N-terminal amino acid sequence in that one has a zinc binding motif (FdA) and the other does not (FdB); in agreement with these findings, FdA contains a zinc ion and FdB does not. These two ferredoxins have identical thermal stabilities, indicating that the zinc atom is not determinant in the protein thermostability. Further, the presence of the additional zinc centre does not interfere with the redox properties of the iron-sulfur clusters since their reduction potentials are almost identical. From the other three archaea, independently of the growth mode in respect to oxygen, only a single zinc-containing ferredoxin was found. EPR studies on the purified proteins, both in the oxidised and dithionite reduced states, allowed the identification of one [3Fe-4S]1+/0 centre and one [4Fe-4S]2+/1+ centre in all proteins studied. The complete sequence of A. ambivalens ferredoxin is reported. Together with the data gathered in this study, the properties of the seven-iron ferredoxins from Sulfolobales so far known are re-discussed. Received: 10 June 1998 / Accepted: 25 June 1998  相似文献   
226.
This studyexamines the effects of weight loss by caloric restriction (WL) andaerobic exercise plus weight loss (AEx+WL) on total and regional bonemineral density (BMD) in older women. Healthy,postmenopausal women [age 63 ± 1 (SE) yr] not onhormone-replacement therapy underwent 6 mo of WL(n = 15) consisting of dietarycounseling one time per week with a caloric deficit (250-350kcal/day) or AEx+WL (n = 15)consisting of treadmill exercise three times per week in addition tothe weight loss. Maximal aerobic capacity increased only in the AEx+WLgroup (P < 0.001). Body weight,percent fat, and fat mass decreased similarly in both groups(P < 0.005), with no changesin fat-free mass. Total body BMD (by dual-energy X-rayabsorptiometry) decreased in both groups(P < 0.05). Femoral neck, Ward'striangle, and greater trochanter BMD decreased in the WL group(P  0.05) but were not significantlydifferent after AEx+WL.L2-L4BMD did not significantly change in either group. Thus WL andAEx+WL both result in losses of totalbody BMD; however, AEx+WL appears to prevent the loss in regional BMDseen with WL alone in healthy, older women. This suggests that theaddition of exercise to weight-loss programs may reduce the risk forbone loss.

  相似文献   
227.
A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V/I)KEX(L/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum cinnamic acid 4-hydroxylase were obtained.Reconstitution experiments with recombinant CYP71E1 heterologously expressed in Escherichia coli and sorghum NADPH–cytochrome P450–reductase in L--dilaurylphosphatidyl choline micelles identified CYP71E1 as the cytochrome P450 that catalyses the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile in dhurrin biosynthesis. In accordance to the proposed pathway for dhurrin biosynthesis CYP71E1 catalyses the dehydration of the oxime to the corresponding nitrile, followed by a C-hydroxylation of the nitrile to produce p-hydroxymandelonitrile. In vivo administration of oxime to E. coli cells results in the accumulation of the nitrile, which indicates that the flavodoxin/flavodoxin reductase system in E. coli is only able to support CYP71E1 in the dehydration reaction, and not in the subsequent C-hydroxylation reaction.CYP79 catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime, the first committed step in the biosynthesis of the cyanogenic glucoside dhurrin. Reconstitution of both CYP79 and CYP71E1 in combination with sorghum NADPH-cytochrome P450–reductase resulted in the conversion of tyrosine to p-hydroxymandelonitrile, i.e. the membranous part of the biosynthetic pathway of the cyanogenic glucoside dhurrin. Isolation of the cDNA for CYP71E1 together with the previously isolated cDNA for CYP79 provide important tools necessary for tissue-specific regulation of cyanogenic glucoside levels in plants to optimize food safety and pest resistance.  相似文献   
228.
229.
To investigate the alterations of glucose homeostasis and variables of the insulin‐like growth factor‐1 (IGF‐1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg?1 b.w.). Training program consisted of swimming 5 days week?1, 1 h day?1, during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF‐1, and IGF binding protein‐3 (IGFBP‐3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF‐1 content. Diabetes decreased serum GH, IGF‐1, IGFBP‐3, liver glycogen, and cerebellum IGF‐1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF‐1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF‐1 concentrations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
230.
The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号