首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3612篇
  免费   291篇
  国内免费   6篇
  2023年   29篇
  2022年   77篇
  2021年   118篇
  2020年   76篇
  2019年   92篇
  2018年   80篇
  2017年   80篇
  2016年   109篇
  2015年   180篇
  2014年   201篇
  2013年   242篇
  2012年   281篇
  2011年   291篇
  2010年   178篇
  2009年   145篇
  2008年   208篇
  2007年   174篇
  2006年   162篇
  2005年   153篇
  2004年   123篇
  2003年   128篇
  2002年   109篇
  2001年   36篇
  2000年   16篇
  1999年   33篇
  1998年   29篇
  1997年   20篇
  1996年   19篇
  1995年   20篇
  1994年   19篇
  1993年   19篇
  1992年   9篇
  1991年   12篇
  1990年   16篇
  1989年   10篇
  1988年   20篇
  1987年   12篇
  1986年   19篇
  1985年   11篇
  1984年   19篇
  1983年   20篇
  1982年   29篇
  1981年   20篇
  1980年   16篇
  1979年   21篇
  1978年   12篇
  1977年   12篇
  1973年   13篇
  1972年   14篇
  1971年   10篇
排序方式: 共有3909条查询结果,搜索用时 15 毫秒
51.
Summary A buffer system consisting of 50 mM Tris-HCl-TRIZMA base plus 10 mM EDTA was used to rapidly dissolve gellan gels used for maintaining transformed carrot root cultures. The optimum conditions of pH 7.5 in the presence of 10 mM EDTA for dissolving gellan were first worked out on a model test system containing 0.4% gellan, 0.025% MgSO4·7H2O, and blue dye. The conditions were then tested on gellan gels (0.2% gellan plus nutrients) containing carrot roots. This gel dissolution system was rapid (18 to 20 min), did not require heating, and could also be efficiently performed at 4 °C. Furthermore, the buffer system used for gel dissolution is a standard one used for plant cell fractionation studies.  相似文献   
52.
53.
Obtusifoliol 14β-demethylase from Sorghum bicolor (L.) Moench has been cloned using a gene-specific probe generated using PCR primers designed from an internal 14 amino acid sequence. The sequence identifies sorghum obtusifoliol 14α-demethylase as a cytochrome P450 and it is assigned to the CYP51 family together with the sterol 14α-demethylases from fungi and mammals. The presence of highly conserved regions in the amino acid sequences, analogous substrates and the same metabolic role demonstrate that the sterol 14α-demethylases are orthologous enzymes. The sterol 14α-demethylases catalyse an essential step in sterol biosynthesis as evidenced by the absence of a 14α-methyl group in all known functional sterols. A functional sorghum obtusifoliol 14α-demethylase was expressed at high levels in Escherichia coli and purified using an efficient method based on temperature-induced Triton X-114 phase partitioning. The recombinant purified enzyme produced a type I spectrum with obtusifoliol as substrate. Reconstitution of purified recombinant enzyme with sorghum NADPH—cytochrome P450 reductase in dilaurylphosphatidylcholine micelles confirms that obtusifoliol 14α-demethylase catalyses the 14α-demethylation of obtusifoliol to 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol as evidenced by GC—MS. The isolation of a cDNA clone encoding the plant sterol 14α-demethylase, combined with the previously isolated cDNA clones for fungal and mammalian sterol 14α-demethylases, provides an important tool in the rational design of specific inhibitors towards the individual sterol 14α-demethylases.  相似文献   
54.
Subclass and ordinal relationships ofLoasaceae, a small predominately New World family, are examined usingrbcL sequence data. Sequences were examined for eight of the fifteen genera of theLoasaceae and the morphologically anomalous aquatic genusHydrostachys (Hydrostachyaceae). Parsimony analyses of these sequences, combined with previously publishedrcbL data, indicate thatLoasaceae belong in theCornales, and are the sister group ofHydrangeaceae. This agrees with phylogenies based on chloroplast DNA inverted repeat restriction site, morphological and chemical data. TherbcL trees support the monophyly of theLoasaceae and most generic relationships correspond to current subfamily divisions. TherbcL phylogeny also provides the first suggestion thatHydrostachys is allied with theHydrangeaceae in theCornales.  相似文献   
55.
Molecular genetic analysis of individuals from 6 Egyptian and 33 German families with fragile X syndrome and 240 further patients with mental retardation was performed applying a completely non-radioactive system. The aim of our study was the development of a non-radioactive detection method and its implementation in molecular diagnosis of the fragile X syndrome. Furthermore, we wanted to assess differences in the mutation sizes between Egyptian and German patients and between Egyptian and German carriers of a premutation. Using non-radioactive polymerase chain reaction (PCR), agarose gel electrophoresis and blotting of the PCR products, followed by hybridisation with a digoxigenin-labelled oligonucleotide probe (CGG)5 and chemiluminescent detection, we identified the fragile X full mutation (amplification of a CGG repeat in the FMR-1 gene ranging from several hundred to several thousand repeat units) in all patients. We observed no differences in the length of the CGG repeat between the Egyptian and German patients and carriers, respectively. However, in one prenatal diagnosis, we detected only one normal sized allele in a female fetus using the PCR-agarose assay, whereas Southern blot analysis with the digoxigenin labelled probe StB 12.3 revealed presence of a full mutation. Our newly established nonradioactive genomic blotting method is based on the conventional radioactive Southern blot analysis. Labelling of the probe StB 12.3 with digoxigenin via PCR allowed the detection of normal, premutated and fully mutated alleles. For exact sizing of small premutated or large normal alleles, we separated digoxigenin labelled PCR products through denaturing poly-acrylamide gelelectrophoresis (PAGE) and transfered them to a nylon membrane using a gel dryer. The blotted PCR-fragments can easily be detected with alkaline phosphate-labelled anti-digoxigenin antibody. The number of trinucleotide repeat units can be determined by scoring the detected bands against a digoxigenated M13 sequencing ladder. Our newly developed digoxigenin/chemiluminescence approach using PCR and Southern blot analysis provides reliable results for routine detection of full fragile X mutations and premutations.  相似文献   
56.
A phase I trial of a murine anti-ganglioside (GD2) monoclonal antibody (mAb) 14G2a was conducted in 14 neuroblastoma patients and 1 osteosarcoma patient to assess its safety, toxicity and pharmacokinetics in pediatric patients. The pharmacokinetics of mAb 14G2a were biphasic with at 1 2/ of 2.8±2.8 h and at 1 2/ of 18.3±11.8 h. In general,t 1 2/ was dose-dependent with a level of significance ofP=0.036, and it reached a plateau at doses of 250 mg/m2 or more. Overall the peak serum levels were dose-dependent atP<0.001. However, they demonstrated an abrupt increase between doses of 100 mg/m2 and 250 mg/m2. The latter two suggest a saturable mechanism for mAb elimination. In addition, peak serum concentrations were observed earlier at higher mAb doses, which indicates the achievement of a steady state. Thet 1 2/ of mAb 14G2a in children appears to be shorter than in adults. Furthermore, 2 patients demonstrated a considerable decrease int 1 2/ following retreatment with 14G2a. This was paralleled by high human anti-(mouse Ig) antibody levels. This study represents the first comprehensive analysis of murine mAb pharmacokinetics in children and will be useful in the future design of mAb therapy.This work was supported by grants from FDA, FD-R-000377 and NIH U10 CA 28439 and in part by a grant from the general Clinical Research Center program, MOI RR00827, of the National Center for Research Resources, National Institutes of Health. M. M. U.-F. and C.-S. H. were supported in part by a grant from the Children's Cancer Research Foundation, and R. A. R. was supported in part by NIH grant CA 42508  相似文献   
57.
Adherence through carbohydrate-binding adhesins is an earlystep in colonization of the lung by gram-negative organisms,and because published data indicate that binding involves mannosegroups, we tested the ability of a ß-linked acetylmannan(acemannan) to inhibit adherence of Pseudomonus aeruginosa tocultures of human lung epithelial cells. Adherence of radiolabelledP.aeruginosa to A549 cells (a type II-like pneurnocyte line)increased linearly with the duration of the incubation. Acemannaninhibited adherence of bacteria, and the extent of inhibitionwas related to the concentration of the mannan. Inhibition requiredcontinued contact between acemannan and the target epithelialcells; cells washed free of acemannan no longer discouragedbacterial binding. Comparison of binding between seven strainsof P.aeruginosa indicated that fewer mucoid than non-mucoidbacteria adhered, but binding of either phenotype was inhibitedby acemannan. Mannose methyl -D-mannopyranoside, methyl ß-D-mannopyrannosideand dextran did not affect adherence of any of the non-mucoidstrains. Mannose inhibited adherence by one mucoid strain, butnot the other, indicating differences between strains of thesame phenotype. Since prior treatment of epithelial cells withconcanavalin A did not affect acemannan-induced inhibition ofbacterial adherence, we concluded that the inhibitory effectof acemannan probably does not involve mannose-containing receptors. bacterial-host interactions lung epithelium mucoid strains non-mucoid strains  相似文献   
58.
[3H] Leukotriene B4 (LTB4) binds concentration dependency to intact human polymorophonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4°C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of [3H] LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 × 10−9M and Bmax of 1.96 × 104 sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 × 10−9M and a Bmax of 45.6 × 104 sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25°C[3H] LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific [3H] LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.  相似文献   
59.
AdeH and adeI are two auxotrophic mutants of Chinese hamster ovary (CHO-K1) cells which specifically require adenine as the purine source to grow. The enzymatic defects of these mutants were examined in cell-free extracts. It was found that adeH did not have any detectable adenylosuccinate synthetase activity and adeI was defective in the adenylosuccinate lyase enzyme. The relevance of adenine-requiring mutants to the study of the regulation of purine metabolism in mammalian cells is discussed.This work was supported by research grants from the National Institute of Aging (AG00029) and the National Foundation, March of Dimes (1-423), and by a contract from the Center for Toxicological Research, Food and Drug Administration (72-213). David Patterson is a recipient of a Research Career Development Award from the National Institute of Arthritis, Metabolic and Digestive Diseases (AM00044).Contribution (No. 218) from the Eleanor Roosevelt Institute for Cancer Research.  相似文献   
60.
Postreplication repair in Neurospora crassa   总被引:1,自引:0,他引:1  
Summary Changes in the molecular weight of nascent DNA made after ultraviolet (UV) irradiation have been studied in the excision-defective Neurospora mutant uvs-2 using isotopic pulse labeling, alkaline gradient centrifugation and alkaline filter elution. Both the size of nascent DNA and the rate of incorporation of label into DNA was reduced by UV light in a dose dependent manner. However, this DNA repair mutant did recover the ability to synthesize control-like high molecular weight DNA 3 hours after UV treatment, although the rate of DNA synthesis remained depressed after the temporary block to elongation (or ligation) had been overcome. Photoreactivation partially eliminated the depression of DNA synthesis rate and UV light killing of cells, providing strong evidence that the effects on DNA synthesis and killing were caused by pyrimidine cyclobutane dimers. The caffeine inhibition repair studies performed were difficult to quantitate but did suggest either partial inhibition of a single repair pathway or alternate postreplication DNA repair pathways in Neurospora. No enhancement in killing was detected after UV irradiation when cells were grown on caffeine containing plates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号