首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5471篇
  免费   440篇
  国内免费   7篇
  5918篇
  2023年   36篇
  2022年   85篇
  2021年   133篇
  2020年   85篇
  2019年   101篇
  2018年   106篇
  2017年   93篇
  2016年   138篇
  2015年   238篇
  2014年   255篇
  2013年   328篇
  2012年   384篇
  2011年   380篇
  2010年   261篇
  2009年   221篇
  2008年   332篇
  2007年   288篇
  2006年   245篇
  2005年   241篇
  2004年   220篇
  2003年   212篇
  2002年   194篇
  2001年   56篇
  2000年   30篇
  1999年   55篇
  1998年   60篇
  1997年   42篇
  1996年   37篇
  1995年   36篇
  1994年   31篇
  1993年   44篇
  1992年   23篇
  1991年   22篇
  1990年   29篇
  1989年   21篇
  1988年   23篇
  1987年   20篇
  1986年   18篇
  1985年   24篇
  1984年   32篇
  1983年   23篇
  1982年   48篇
  1981年   40篇
  1980年   31篇
  1979年   29篇
  1978年   21篇
  1977年   27篇
  1975年   18篇
  1973年   21篇
  1972年   23篇
排序方式: 共有5918条查询结果,搜索用时 15 毫秒
981.
982.
This Letter describes the discovery and SAR of three novel series of mGluR5 non-competitive antagonists/negative allosteric modulators (NAMs) not based on manipulation of an MPEP/MTEP chemotype. This work demonstrates fundamentally new mGluR5 NAM chemotypes with submicromolar potencies, and the first example of a mode of pharmacology ‘switch’ to provide PAMs with a non-MPEP scaffold.  相似文献   
983.
Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N2O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies™). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.  相似文献   
984.

Background  

Both overproduction of nitric oxide (NO) and oxidative injury of cardiovascular and pulmonary systems contribute to fatal cardiovascular depression during endotoxemia. We investigated in the present study the relative contribution of oxidative stress and NO to cardiovascular depression during different stages of endotoxemia, and delineated their roles in cardiovascular protective effects of a commonly used anesthetic propofol during endotoxemia.  相似文献   
985.
A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon × Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0–34.4 and 28.9–31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14–70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.  相似文献   
986.
Delta (δ) subunit containing GABAA receptors are expressed extra‐synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with α6 subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABAA receptor pentamers by subunit concatenation. These receptors (composed of α6, β3 and δ subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one and to 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. α6‐β3‐α6/δ receptors showed a substantial response to GABA alone. Three receptors, β3‐α6‐δ/α6‐β3, α6‐β3‐α63‐δ and β3‐δ‐β36‐β3, were only uncovered in the combined presence of the neurosteroid 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one with GABA. All four receptors were activated by 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the δ subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the δ subunit can assume multiple positions in a receptor pentamer composed of α6, β3 and δ subunits.  相似文献   
987.
We have investigated the interaction of the uncommonly large periplasmic P2 loop of the MalF subunit of the maltose ATP-binding cassette transporter (MalFGK2) from Escherichia coli and Salmonella enterica serovar Typhimurium with maltose binding protein (MalE) by site-specific chemical cross-linking in the assembled transport complex. We focused on possible distance changes between two pairs of residues of the P2 loop and MalE during the transport cycle. The distance between MalF(S205C) and MalE(T80C) (∼5 Å) remained unchanged under all conditions tested. Cross-linking did not affect the ATPase activity of the complex. The distance between MalF(T177C) and MalE(T31C) changed from ∼10 Å to ∼5 Å upon binding of ATP (or maltose, with a less pronounced result) and was reset to ∼10 Å after hydrolysis of one ATP. A cross-link (∼25 Å) between MalF(S205C) and MalE(T31C) was observed only when the transporter resided in a transition state-like conformation, as was the case after vanadate trapping or in a binding protein-independent mutant, both of which are characterized by tight binding of unliganded MalE to the transporter. Thus, we propose that the observed cross-link is indicative of catalytic intermediates of the transporter. Together, our results strengthen the notion that the MalF P2 loop plays an important role in intersubunit communication. In particular, this loop is involved in keeping MalE in close contact with the transporter. The data are discussed with respect to a crystal structure and current transport models.ATP-binding cassette (ABC) transporters utilize the free energy of ATP hydrolysis to translocate substrates across biological membranes and can function as import or export systems (17). ABC transporters are generally composed of two hydrophobic, pore-forming transmembrane subunits and transmembrane domains (TMDs) and two hydrophilic nucleotide-binding (or ABC) subunits and nucleotide-binding domains (NBDs) that hydrolyze ATP (9). The crystal structures of isolated NBDs (6, 23, 34, 43) revealed that NBDs can be divided into a RecA-like subdomain comprising both the Walker A and the Walker B motifs, which are involved in nucleotide binding, and a helical subdomain harboring the unique LSGGQ motif (35). Furthermore, in the physiologically relevant NBD dimer, the nucleotide is complexed between the Walker A and B sites of one monomer and the LSGGQ motif of the opposing monomer. Both subdomains are joined by the “Q loop” containing a conserved glutamine residue that binds to the Mg2+ ion and attacking water and is likely to be involved in communicating ATP binding to the TMDs (10, 20, 29). ATP-dependent closing of the NBD dimer is thought to provide one possibility of the power stroke of ABC transporters (38).ABC importers that are confined to prokaryotes mediate the uptake of a large variety of solutes, including inorganic ions, amino acids, sugars, vitamins, oligopeptides, and polyamines (5). They require an additional protein, the extracytoplasmic solute binding protein (SBP), in order to capture the substrate and to deliver it to the cognate ABC transporter (37). SBPs typically consist of two lobes that are connected by a linker region. The interface between the two lobes forms the substrate binding site. Upon binding of the ligand, the proteins undergo a conformational change from an open toward a closed state (33) which, by interaction with extracytoplasmic peptide regions of TMDs of the cognate ABC transporter, initiates the transport process (31). The molecular events by which binding of ATP to the NBDs and interaction of liganded binding proteins with the TMDs are communicated to eventually trigger substrate translocation are still poorly understood.The maltose ABC transporter of Escherichia coli and Salmonella enterica serovar Typhimurium is one of the best-characterized transporters and thus serves as a model system for studying the mechanism by which ABC transporters exert their functions in general (15). The transporter is composed of the extracytoplasmic (periplasmic) maltose binding protein (MalE), the membrane-spanning subunits MalF and MalG, and two copies of the ATP-hydrolyzing subunit (MalK) (Fig. (Fig.1A1A).Open in a separate windowFIG. 1.(A) Structure of the catalytic intermediate of the maltose transporter [MalFGK(E159Q)2-E]. The complex is shown in a ribbon diagram. White horizontal bars mark the boundaries of the membrane. Color code: yellow, MalE; cyan, MalF; red, MalG; green and magenta, MalK dimer. (B) Close-up view of the contact site between MalF P2 and the N-terminal lobe of MalE. The color code is the same as that for panel A. Residues from regions I and II that were replaced by cysteines are indicated in pink (MalF) and green (MalE). Residue MalE-K179, which was used as a control, is shown in green. The figure was drawn with DS ViewerPro 6.0 (Accelrys, Cambridge, United Kingdom), using the coordinates from entry 2R6G in the Brookhaven Protein Data Bank.Recently, suppressor mutational analysis provided a first hint that substrate availability is communicated from MalE to the MalK dimer via periplasmic loop regions of MalFG (11). Moreover, by site-directed cross-linking based on previous genetic evidence (19, 40), we demonstrated a close proximity of MalE G13 to Pro-78 in the first periplasmic loop (P1) of MalG, independently of cofactors such as maltose or ATP. Interaction of both residues was also observed in intact cells (11). These findings led us to propose that a copy of MalE is permanently associated with the transporter throughout the catalytic cycle. Furthermore, we have found that a region of the large, periplasmic P2 loop of MalF around Ser-205 (Fig. (Fig.1)1) is in cross-linking distance from MalE in the presence of maltose and MgATP only or when the transporter resides in the vanadate-trapped transition state. These results were perfectly confirmed by the subsequently published crystal structure of the MalFGK(E159Q)2-E complex, which represents a transport intermediate (32). Here, the MalK dimer is complexed with two ATP molecules, and MalE is tightly associated with MalFG, but maltose has already been released into a binding pocket formed by MalF only. In particular, the N-terminal lobe of MalE is in close contact with the P2 loop of MalF (Fig. (Fig.1A1A).In this communication, we have taken advantage of this structural information to gain further insight into the MalF P2-MalE interaction during the transport cycle. We demonstrate ATP- and maltose-dependent distance changes between selected pairs of residues of the loop and MalE in the assembled complex by site-specific cross-linking. Our data demonstrate for the first time that the MalF P2 loop is in close contact to MalE throughout the catalytic cycle.  相似文献   
988.
989.
The mechanisms by which invasive species are able to spread into and dominate natural communities are poorly understood and remain a focus of invasion research. In this quest, studying invasions that are limited by a controlling factor will be more informative than will studies documenting unabated spread and impacts. Some ant species are very successful invaders, and research demonstrating abiotic and biotic factors limiting their success has aided the understanding of invasion ecology. We report here a study showing the highly invasive African big headed ant Pheidole megacephala having a novel distribution on coral cays within Australia’s Great Barrier Reef. These patterns displayed a clear limitation of its distribution with monocultures of the tree Pisonia grandis. This distribution was contrary to the known environmental limitations of the ant, and the limitation could not be associated with an underlying abiotic determinant of the vegetation type. We present these distributional patterns, and following consideration of all known biotic and abiotic limitations of ant invasions we discuss the potential that the peculiar ecophysiology of P. grandis is the causal factor. Specifically, we suggest that the quality of carbohydrate supply to ants is a limitation to invasive spread in much the same way that carbohydrate quantity is known to affect ant population densities in other ecosystems.  相似文献   
990.
Interleukin-2 (IL-2) is a cytokine that regulates proliferation, differentiation and survival of various lymphoid cell subsets. Its actions are mediated through its binding to the IL-2 receptor which is composed of three subunits (IL-2Rα, IL-2Rβ and γc). Only β and γc have been shown to transduce intra cellular signals. The γc chain is shared by the interleukin-2, 4, 7, 9, 15 and 21 receptors, and is essential for lymphocyte functions. The regulation of γc expression level is therefore critical for the ability of cells to respond to these cytokines. In the present work, we show that the IL-2R constitutively associates with the ubiquitin ligase NEDD4-2, and to a lesser extent NEDD4-1. We identified the specific binding site on γc. And we show that the loss of NEDD4 association on γc is accompanied by a dramatic increase of the half-life of the receptor subunit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号