全文获取类型
收费全文 | 3837篇 |
免费 | 349篇 |
国内免费 | 6篇 |
专业分类
4192篇 |
出版年
2023年 | 30篇 |
2022年 | 78篇 |
2021年 | 118篇 |
2020年 | 80篇 |
2019年 | 97篇 |
2018年 | 83篇 |
2017年 | 79篇 |
2016年 | 116篇 |
2015年 | 182篇 |
2014年 | 205篇 |
2013年 | 250篇 |
2012年 | 297篇 |
2011年 | 303篇 |
2010年 | 189篇 |
2009年 | 154篇 |
2008年 | 220篇 |
2007年 | 182篇 |
2006年 | 166篇 |
2005年 | 158篇 |
2004年 | 131篇 |
2003年 | 141篇 |
2002年 | 120篇 |
2001年 | 44篇 |
2000年 | 23篇 |
1999年 | 36篇 |
1998年 | 35篇 |
1997年 | 25篇 |
1996年 | 21篇 |
1995年 | 27篇 |
1994年 | 20篇 |
1993年 | 20篇 |
1992年 | 15篇 |
1991年 | 22篇 |
1989年 | 16篇 |
1988年 | 21篇 |
1987年 | 17篇 |
1986年 | 20篇 |
1985年 | 16篇 |
1984年 | 19篇 |
1983年 | 20篇 |
1982年 | 36篇 |
1981年 | 22篇 |
1980年 | 19篇 |
1979年 | 22篇 |
1978年 | 13篇 |
1977年 | 17篇 |
1973年 | 17篇 |
1972年 | 15篇 |
1971年 | 12篇 |
1969年 | 13篇 |
排序方式: 共有4192条查询结果,搜索用时 15 毫秒
21.
Leila Feiz Rosalind Williams‐Carrier Susan Belcher Monica Montano Alice Barkan David B. Stern 《The Plant journal : for cell and molecular biology》2014,80(5):862-869
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin–Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co‐factor of hepatocyte nuclear factor 1 (DCoH)/pterin‐4α‐carbinolamine dehydratases (PCD)‐like protein is the causative mutation in a seedling‐lethal, Rubisco‐deficient mutant named Rubisco accumulation factor 2 (raf2‐1). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high‐molecular weight complex, the formation of which requires a specific chaperonin 60‐kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross‐linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co‐immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co‐immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins. 相似文献
22.
23.
Group living can incur both benefits and costs, mediated by different mechanisms. In many gregarious caterpillars, collective use of a network of silk trails is thought to improve foraging. Grouping, i.e., close contact with conspecifics, has been postulated to have both positive (thermoregulation and predator defense) and negative (competition and pathogen transmission) effects. The present experiment distinguishes between silk produced by group members and grouping per se in their effects on growth and development of both early and late larval stadia of the forest tent caterpillar [Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae)] in a laboratory context. For both developmental stadia tested, pre‐established silk trails decreased latency to food finding and hence increased food consumption and growth rate. For younger larvae, pre‐established silk also decreased investment in silk production. Grouping young caterpillars accelerated development at the expense of growth, possibly as a mechanism to avoid intraspecific competition in later larval stadia. In older caterpillars, grouping decreased meal duration, suggesting that competition can indeed occur towards the end of larval development, even in the presence of surplus food. This led to a decrease in growth without any effect on instar duration. The benefits of exogenous silk thus decreased during larval development, whereas the costs associated with crowding increased. Ontogenetic shifts in grouping are common in many taxa: the present study is among the first to provide empirical evidence for an adaptive explanation of observed ontogenetic changes in aggregative behavior. 相似文献
24.
Margalith I Suter C Ballmer B Schwarz P Tiberi C Sonati T Falsig J Nyström S Hammarström P Aslund A Nilsson KP Yam A Whitters E Hornemann S Aguzzi A 《The Journal of biological chemistry》2012,287(23):18872-18887
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits. 相似文献
25.
Daniel Sol Núria Garcia Andrew Iwaniuk Katie Davis Andrew Meade W. Alice Boyle Tamás Székely 《PloS one》2010,5(3)
Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size) than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68%) of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better. 相似文献
26.
Karelle Benardais Basem Kasem Alice Couegnas Brigitte Samama Sebastien Fernandez Christiane Schaeffer Maria-Cristina Antal Didier Job Annie Schweitzer Annie Andrieux Anne Giersch Astrid Nehlig Nelly Boehm 《PloS one》2010,5(9)
Background
STOP (Stable Tubulin-Only Polypeptide) null mice show behavioral deficits, impaired synaptic plasticity, decrease in synaptic vesicular pools and disturbances in dopaminergic transmission, and are considered a neurodevelopmental model of schizophrenia. Olfactory neurons highly express STOP protein and are continually generated throughout life. Experimentally-induced loss of olfactory neurons leads to epithelial regeneration within two months, providing a useful model to evaluate the role played by STOP protein in adult olfactory neurogenesis.Methodology/Principal Findings
Immunocytochemistry and electron microscopy were used to study the structure of the glomerulus in the main olfactory bulb and neurogenesis in the neurosensorial epithelia. In STOP null mice, olfactory neurons showed presynaptic swellings with tubulovesicular profiles and autophagic-like structures. In olfactory and vomeronasal epithelia, there was an increase in neurons turnover, as shown by the increase in number of proliferating, apoptotic and immature cells with no changes in the number of mature neurons. Similar alterations in peripheral olfactory neurogenesis have been previously described in schizophrenia patients. In STOP null mice, regeneration of the olfactory epithelium did not modify these anomalies; moreover, regeneration resulted in abnormal organisation of olfactory terminals within the olfactory glomeruli in STOP null mice.Conclusions/Significance
In conclusion, STOP protein seems to be involved in the establishment of synapses in the olfactory glomerulus. Our results indicate that the olfactory system of STOP null mice is a well-suited experimental model (1) for the study of the mechanism of action of STOP protein in synaptic function/plasticity and (2) for pathophysiological studies of the mechanisms of altered neuronal connections in schizophrenia. 相似文献27.
Andrew S. Felts Alice L. Rodriguez Ryan D. Morrison Katrina A. Bollinger Daryl F. Venable Anna L. Blobaum Frank W. Byers Analisa Thompson Gray J. Scott Daniels Colleen M. Niswender Carrie K. Jones P. Jeffrey Conn Craig W. Lindsley Kyle A. Emmitte 《Bioorganic & medicinal chemistry letters》2017,27(21):4858-4866
Based on a hypothesis that an intramolecular hydrogen bond was present in our lead series of picolinamide mGlu5 NAMs, we reasoned that an inactive nicotinamide series could be modified through introduction of a fused heterocyclic core to generate potent mGlu5 NAMs. In this Letter, we describe the synthesis and evaluation of compounds that demonstrate the viability of that approach. Selected analogs were profiled in a variety of in vitro assays, and two compounds were evaluated in rat pharmacokinetic studies and a mouse model of obsessive-compulsive disorder. Ancillary pharmacology screening revealed that members of this series exhibited moderate inhibition of the dopamine transporter (DAT), and SAR was developed that expanded the selectivity for mGlu5 versus DAT. 相似文献
28.
Aaron M. Bender Rebecca L. Weiner Vincent B. Luscombe Sonia Ajmera Hyekyung P. Cho Sichen Chang Xiaoyan Zhan Alice L. Rodriguez Colleen M. Niswender Darren W. Engers Thomas M. Bridges P. Jeffrey Conn Craig W. Lindsley 《Bioorganic & medicinal chemistry letters》2017,27(15):3576-3581
This letter describes the synthesis and structure activity relationship (SAR) studies of structurally novel M4 antagonists, based on a 3-(4-aryl/heteroarylsulfonyl)piperazin-1-yl)-6-(piperidin-1-yl)pyridazine core, identified from a high-throughput screening campaign. A multi-dimensional optimization effort enhanced potency at human M4 (hM4 IC50s < 200 nM), with only moderate species differences noted, and with enantioselective inhibition. Moreover, CNS penetration proved attractive for this series (rat brain:plasma Kp = 2.1, Kp,uu = 1.1). Despite the absence of the prototypical mAChR antagonist basic or quaternary amine moiety, this series displayed pan-muscarinic antagonist activity across M1-5 (with 9- to 16-fold functional selectivity at best). This series further expands the chemical diversity of mAChR antagonists. 相似文献
29.
Ali NA Gaughan AA Orosz CG Baran CP McMaken S Wang Y Eubank TD Hunter M Lichtenberger FJ Flavahan NA Lawler J Marsh CB 《PloS one》2008,3(4):e1914
Latency Associated Peptide (LAP) binds TGF-beta1, forming a latent complex. Currently, LAP is presumed to function only as a sequestering agent for active TGF-beta1. Previous work shows that LAP can induce epithelial cell migration, but effects on leukocytes have not been reported. Because of the multiplicity of immunologic processes in which TGF-beta1 plays a role, we hypothesized that LAP could function independently to modulate immune responses. In separate experiments we found that LAP promoted chemotaxis of human monocytes and blocked inflammation in vivo in a murine model of the delayed-type hypersensitivity response (DTHR). These effects did not involve TGF-beta1 activity. Further studies revealed that disruption of specific LAP-thrombospondin-1 (TSP-1) interactions prevented LAP-induced responses. The effect of LAP on DTH inhibition depended on IL-10. These data support a novel role for LAP in regulating monocyte trafficking and immune modulation. 相似文献
30.