首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   60篇
  834篇
  2022年   6篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   10篇
  2017年   20篇
  2016年   9篇
  2015年   32篇
  2014年   27篇
  2013年   41篇
  2012年   50篇
  2011年   58篇
  2010年   35篇
  2009年   38篇
  2008年   50篇
  2007年   49篇
  2006年   46篇
  2005年   41篇
  2004年   37篇
  2003年   34篇
  2002年   24篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   10篇
  1997年   6篇
  1996年   12篇
  1995年   6篇
  1994年   5篇
  1993年   18篇
  1992年   4篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   8篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1971年   4篇
  1969年   3篇
  1967年   5篇
排序方式: 共有834条查询结果,搜索用时 13 毫秒
11.
The small Photosystem I particles prepared from spinach chloroplasts by the action of Triton X-100 (TSF 1 particles) reaggregate into membrane structures when they are incubated with soybean phospholipids and cholate and then subjected to a slow dialysis. The membranes so formed are vesicular in nature and show the capability of catalyzing phenazine methosulfate-mediated cyclic photophosphorylalation at rates which are usually about 20% of those observed with chloroplasts, but higher rates have been obtained. When coupling factor is removed from the chloroplasts by treatment with EDTA, a requirement for coupling factor can be shown for the subsequent ATP formation. The uncouplers carbonylcyanide 3-chlorophenyl-hydrazone, valinomycin, Triton X-100 and NH+4 are effective with the reformed vesicles, which do not show the typical light-induced pH gradient observed with chloroplasts. Incubation of the TSF 1 particles with phospholipids alone allows for the formation of membrane vesicles, but such vesicles are only slightly active in ATP formation. In most properties investigated, the reformed membrane vesicles resemble the original chloroplast membrane so far as phenazine methosulfate-mediated cyclic photophosphorylation is concerned, which indicates a high degree of selectivity in the reaggregation process. The major difference between chloroplasts and the reformed vesicles is the failure of the latter to show a light-induced pH gradient.  相似文献   
12.
The plant toxin ricin is transported from the plasma membrane via early endosomes and the Golgi apparatus to the endoplasmic reticulum. From this compartment, it enters the cytosol and inhibits protein synthesis. Lipid phosphorylation is an important regulator of vesicular transport, and in the present study we have investigated the role of the phosphatidylinositol (PI) 3-kinase hVps34 in retrograde transport of ricin. Our data demonstrate that transport of ricin from endosomes to the Golgi apparatus in human embryonic kidney cells (HEK 293) is dependent on PI(3)P. By using PI 3-kinase inhibitors, by sequestering the hVps34 product PI(3)P and by expressing mutants of hVps34 or small interfering RNA targeted against its messenger RNA, we show that hVps34 and its product PI(3)P are involved in transport of ricin from endosome to Golgi apparatus. Furthermore, we identify two effector proteins in the hVps34-dependent pathway, namely sorting nexin (SNX) 2 and SNX4. Knockdown of SNX2 or SNX4 inhibits ricin transport to the Golgi apparatus to the same extent as when hVps34 is perturbed. Furthermore, inhibition or knockdown of hVps34 redistributes these proteins. Interestingly, knocking down both SNX2 and SNX4 results in a better inhibition than knocking down only one of them, suggesting that they may act on separate pathways.  相似文献   
13.
14.
Dipeptidyl-peptidases III (DPP III) are zinc-dependent enzymes that specifically cleave the first two amino acids from the N terminus of different length peptides. In mammals, DPP III is associated with important physiological functions and is a potential biomarker for certain types of cancer. Here, we present the 1.95-A crystal structure of yeast DPP III representing the prototype for the M49 family of metallopeptidases. It shows a novel fold with two domains forming a wide cleft containing the catalytic metal ion. DPP III exhibits no overall similarity to other metallopeptidases, such as thermolysin and neprilysin, but zinc coordination and catalytically important residues are structurally conserved. Substrate recognition is accomplished by a binding site for the N terminus of the peptide at an appropriate distance from the metal center and by a series of conserved arginine residues anchoring the C termini of different length substrates.  相似文献   
15.
The fatty acid composition of ER, Golgi and peribacteroid membrane (PBM) from root nodules formed on Glycine max after infection with different strains of Bradyrhizobium japonicum has been analysed by gas chromatography. In each plant-microsymbiont combination the fatty acid composition (FAC) of the PBM is distinct from ER and Golgi. The similarity between ER and PBM fatty acid composition is significantly stronger than between Golgi and PBM. In addition the fatty acid composition of all membrane systems in nodules is affected by the microsymbiont strain. A comparison of four strains of Bradyrhizobium japonicum grown in agar surface culture and isolated as the symbiotic bacteroids reveals a decrease in oleic acid during bacteroid differentiation.  相似文献   
16.
Recently, a novel wheat thaumatin-like protein, TLXI, which inhibits microbial glycoside hydrolase family (GH) 11 xylanases has been identified. It is the first xylanase inhibitor that exerts its inhibition in a non-competitive way. In the present study we gained insight into the interaction between TLXI and xylanases via combined molecular modeling and mutagenic approaches. More specifically, site-specific mutation of His22, situated on a loop which distinguishes TLXI from other, non-inhibiting, thaumatin-like proteins, and subsequent expression of the mutant in Pichia pastoris resulted in a protein lacking inhibition capacity. The mutant protein was unable to form a complex with GH11 xylanases. Based on these findings, the interaction of TLXI with GH11 xylanases is discussed.  相似文献   
17.
Staphylococcus aureus Clp ATPases (molecular chaperones) alter normal physiological functions including an aconitase‐mediated effect on post‐stationary growth, acetate catabolism, and entry into death phase (Chatterjee et al., J. Bacteriol. 2005, 187, 4488–4496). In the present study, the global function of ClpC in physiology, metabolism, and late‐stationary phase survival was examined using DNA microarrays and 2‐D PAGE followed by MALDI‐TOF MS. The results suggest that ClpC is involved in regulating the expression of genes and/or proteins of gluconeogenesis, the pentose‐phosphate pathway, pyruvate metabolism, the electron transport chain, nucleotide metabolism, oxidative stress, metal ion homeostasis, stringent response, and programmed cell death. Thus, one major function of ClpC is balancing late growth phase carbon metabolism. Furthermore, these changes in carbon metabolism result in alterations of the intracellular concentration of free NADH, the amount of cell‐associated iron, and fatty acid metabolism. This study provides strong evidence for ClpC as a critical factor in staphylococcal energy metabolism, stress regulation, and late‐stationary phase survival; therefore, these data provide important insight into the adaptation of S. aureus toward a persister state in chronic infections.  相似文献   
18.
L-amino acid oxidase (LAAO) from the Malayan pit viper induces both necrosis and apoptosis in Jurkat cells. Cell death by necrosis is attributed to H2O2 produced by oxidation of α-amino acids. In the presence of catalase that effectively scavenges H2O2, a switch to apoptosis is observed. The major factors contributing to apoptosis are proposed to be: (i) generation of toxic intermediates from fetal calf serum (ii) binding and internalization of LAAO. The latter process appears to be mediated by the glycan moiety of the enzyme as desialylation reduces cytotoxicity. D-amino acid oxidase (DAAO), which catalyzes the same reaction as LAAO but lacks glycosylation, triggers necrosis as a consequence of H2O2 production but not apoptosis in the presence of catalase. Thus induction of cell death by LAAO appears to involve both the generation of H2O2 and the molecular interaction of the glycan moiety of the enzyme with structures at the cell surface. S. R. Ande, P. R. Kommoju contributed equally to this work.  相似文献   
19.
Summary Using a monoclonal antibody selective for the acetylcholine (ACh)-synthesizing enzyme choline acetyltransferase (ChAT) of Drosophila melanogaster we find ChAT-like immunoreactivity in specific synaptic regions throughout the brain of Drosophila melanogaster apart from the lobes and the peduncle of the mushroom body and most of the first visual neuropile (lamina). Several anatomically well-defined central brain structures exhibit particularly strong binding. Characteristic differential staining patterns are observed for each of the four neuromeres of the optic lobes. Cell bodies appear not to bind this antibody. The prominent features of the distribution of ChAT-like immunoreactivity are paralleled by the distribution of acetylcholine hydrolyzing enzymatic activity as revealed by histochemical staining for acetylcholine esterase (AChE). These results are discussed in comparison with published data on enzyme distribution, choline uptake and ACh receptor binding in the nervous system of Drosophila melanogaster.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号