首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13287篇
  免费   733篇
  国内免费   33篇
  2024年   20篇
  2023年   120篇
  2022年   362篇
  2021年   609篇
  2020年   375篇
  2019年   479篇
  2018年   522篇
  2017年   397篇
  2016年   592篇
  2015年   699篇
  2014年   853篇
  2013年   1014篇
  2012年   1105篇
  2011年   966篇
  2010年   605篇
  2009年   492篇
  2008年   630篇
  2007年   613篇
  2006年   516篇
  2005年   504篇
  2004年   423篇
  2003年   342篇
  2002年   310篇
  2001年   184篇
  2000年   165篇
  1999年   123篇
  1998年   76篇
  1997年   45篇
  1996年   50篇
  1995年   48篇
  1994年   30篇
  1993年   33篇
  1992年   62篇
  1991年   54篇
  1990年   57篇
  1989年   56篇
  1988年   53篇
  1987年   39篇
  1986年   36篇
  1985年   46篇
  1984年   38篇
  1983年   31篇
  1982年   27篇
  1981年   27篇
  1979年   25篇
  1978年   23篇
  1977年   16篇
  1976年   24篇
  1975年   21篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 38 毫秒
151.
152.
Administration of methamphetamine (METH) to animals causes loss of DA terminals in the brain. The manner by which METH causes these changes in neurotoxicity is not known. We have tested the effects of this drug in copper/zinc (CuZn)-superoxide dismutase transgenic (SOD Tg) mice, which express the human CuZnSOD gene. In nontransgenic (non-Tg) mice, acute METH administration causes significant decreases in DA and dihydroxyphenylacetic acid (DOPAC) in the striata of non-Tg mice. In contrast, there were no significant decreases in striatal DA in the SOD Tg mice. The effects of METH on DOPAC were also attenuated in SOD Tg mice. Chronic METH administration caused decreases in striatal DA and DOPAC in the non-Tg mice, but not in the SOD-Tg mice. Similar studies were carried out with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP), which also causes striatal DA and DOPAC depletion. As in the case of METH, MPTP causes marked depletion of DA and DOPAC in the non-Tg mice, but not in the SOD Tg mice. These results suggest that the mechanisms of toxicity of both METH and MPTP involve superoxide radical formation.  相似文献   
153.
Abstract

The syntheses of three classes of adenosine analogues involving cyclosubstitution at the 6-position and functionalization at the 2-position are reported. The target molecules synthesized are stable with respect to hydrolytic deamination by mammalian adenosine deaminase, and, because of major structural changes at the 2- and 6-positions, these compounds are expected to be poor phosphorylation substrates for the kinases. Adenosine receptor binding data reveal that several of the compounds synthesized show excellent A1 receptor affinity and A2/A1 selectivity.  相似文献   
154.
Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell lineT1074, with IC50 value of 32.5±0.5μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.  相似文献   
155.
Arduous efforts have been made in the last three decades to elucidate the role of insulin in the brain. A growing number of evidences show that insulin is involved in several physiological function of the brain such as food intake and weight control, reproduction, learning and memory, neuromodulation and neuroprotection. In addition, it is now clear that insulin and insulin disturbances particularly diabetes mellitus may contribute or in some cases play the main role in development and progression of neurodegenerative and neuropsychiatric disorders. Focusing on the molecular mechanisms, this review summarizes the recent findings on the involvement of insulin dysfunction in neurological disorders like Alzheimer’s disease, Parkinson’s disease and Huntington’s disease and also mental disorders like depression and psychosis sharing features of neuroinflammation and neurodegeneration.  相似文献   
156.
Catechol oxidase was distributed in soluble and particulate fractions of Solanum melongena. The purified preparation appears to be homogeneous by polyacrylamide gel electrophoresis. The enzyme shows two pH maxima—with catechol, 6.5 and 7.5; and with dopa, 6.5 and 7.9. The latent form of the enzyme does not occur in S. melongena. The preparation resembles the enzyme from other sources in substrate specificity towards various mono- and diphenols, having a higher affinity for catechol than dopa; this tendency increases on purification. The cresolase activity decreases with purification and a lag period with p-cresol is observed. The oxidation of mono- and diphenols is inhibited by ascorbic acid, sulphydryl compounds and chelating agents.  相似文献   
157.
Protein arginine methyltransferase 5 (PRMT5) is a major enzyme responsible for generating monomethyl and symmetric dimethyl arginine in proteins. PRMT5 is essential for cell viability and development, and its overexpression is observed in a variety of cancers. In the present study, it is found that levels of PRMT5 protein and symmetric arginine dimethylation in colorectal cancer (CRC) tissues are increased compared to those in adjacent noncancerous tissues. Using immunoaffinity enrichment of methylated peptides combined with high‐resolution mass spectrometry, a total of 147 symmetric dimethyl‐arginine (SDMA) sites in 94 proteins are identified, many of which are RNA binding proteins and enzymes. Quantitative analysis comparing CRC and normal tissues reveals significant increase in the symmetric dimethylation of 70 arginine sites in 46 proteins and a decrease in that of four arginine sites in four proteins. Among the 94 proteins identified in this study, it is confirmed that KH‐type splicing regulatory protein is a target of PRMT5 and highly expressed in CRC tissues compared to noncancerous tissues. This study is the first comprehensive analysis of symmetric arginine dimethylation using clinical samples and extends the number of known in vivo SDMA sites. The data obtained are available via ProteomeXchange with the identifier PXD015653.  相似文献   
158.
159.
Kidney failure is one of the most important challenges in medicine. In this study, we used HEK-293 kidney cells to evaluate and compare changes in the expr  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号