首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10378篇
  免费   590篇
  国内免费   32篇
  11000篇
  2024年   26篇
  2023年   114篇
  2022年   358篇
  2021年   544篇
  2020年   332篇
  2019年   423篇
  2018年   453篇
  2017年   327篇
  2016年   471篇
  2015年   536篇
  2014年   641篇
  2013年   807篇
  2012年   850篇
  2011年   730篇
  2010年   442篇
  2009年   355篇
  2008年   446篇
  2007年   445篇
  2006年   392篇
  2005年   390篇
  2004年   301篇
  2003年   255篇
  2002年   230篇
  2001年   110篇
  2000年   99篇
  1999年   81篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   41篇
  1994年   26篇
  1993年   28篇
  1992年   47篇
  1991年   42篇
  1990年   46篇
  1989年   42篇
  1988年   45篇
  1987年   33篇
  1986年   30篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   22篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Pandey AK  Gaind S  Ali A  Nain L 《Biodegradation》2009,20(3):293-306
A composting experiment was conducted to evaluate the effect of a hyperlignocellulolytic fungal consortium and different nitrogen amendments on paddy straw composting in terms of changes in physicochemical and biological parameters. A fungal consortium comprising four lignocellulolytic mesophilic fungal cultures was used as inoculum for bioaugmentation of paddy straw in perforated pits. The comparative effect of farmyard manure (FYM), soybean trash, poultry litter and urea on the composting process was evaluated at monthly intervals in terms of physicochemical (pH, EC, available P, C:N ratio and humus content) and biological (enzymatic and microbial activity) parameters. The compost prepared from bioaugmented paddy straw composting mixture, with poultry manure as nitrogen supplement attained desirable C:N ratio in 1 month and displayed least phytotoxicity levels along with higher production of β-1,4-Exoglucanase. The combined activity of the autochthonous composting microbiota as well as the externally applied fungal inoculum accelerated the composting process of paddy straw. Supplementation of paddy straw with poultry manure in 8:1 ratio was identified as the best treatment to hasten the composting process. This study highlights the importance of application of fungal inoculum and an appropriate N-amendment such as poultry manure for preparation of compost using a substrate having high C:N ratio, such as paddy straw.  相似文献   
102.
103.
In response to DNA damage or replication stress, the protein kinase ATR is activated and subsequently transduces genotoxic signals to cell cycle control and DNA repair machinery through phosphorylation of a number of downstream substrates. Very little is known about the molecular mechanism by which ATR is activated in response to genotoxic insults. In this report, we demonstrate that protein phosphatase 5 (PP5) is required for the ATR-mediated checkpoint activation. PP5 forms a complex with ATR in a genotoxic stress-inducible manner. Interference with the expression or the activity of PP5 leads to impairment of the ATR-mediated phosphorylation of hRad17 and Chk1 after UV or hydroxyurea treatment. Similar results are obtained in ATM-deficient cells, suggesting that the observed defect in checkpoint signaling is the consequence of impaired functional interaction between ATR and PP5. In cells exposed to UV irradiation, PP5 is required to elicit an appropriate S-phase checkpoint response. In addition, loss of PP5 leads to premature mitosis after hydroxyurea treatment. Interestingly, reduced PP5 activity exerts differential effects on the formation of intranuclear foci by ATR and replication protein A, implicating a functional role for PP5 in a specific stage of the checkpoint signaling pathway. Taken together, our results suggest that PP5 plays a critical role in the ATR-mediated checkpoint activation.  相似文献   
104.
The COMPASS family of H3K4 methylases in Drosophila   总被引:1,自引:0,他引:1  
Methylation of histone H3 lysine 4 (H3K4) in Saccharomyces cerevisiae is implemented by Set1/COMPASS, which was originally purified based on the similarity of yeast Set1 to human MLL1 and Drosophila melanogaster Trithorax (Trx). While humans have six COMPASS family members, Drosophila possesses a representative of the three subclasses within COMPASS-like complexes: dSet1 (human SET1A/SET1B), Trx (human MLL1/2), and Trr (human MLL3/4). Here, we report the biochemical purification and molecular characterization of the Drosophila COMPASS family. We observed a one-to-one similarity in subunit composition with their mammalian counterparts, with the exception of LPT (lost plant homeodomains [PHDs] of Trr), which copurifies with the Trr complex. LPT is a previously uncharacterized protein that is homologous to the multiple PHD fingers found in the N-terminal regions of mammalian MLL3/4 but not Drosophila Trr, indicating that Trr and LPT constitute a split gene of an MLL3/4 ancestor. Our study demonstrates that all three complexes in Drosophila are H3K4 methyltransferases; however, dSet1/COMPASS is the major monoubiquitination-dependent H3K4 di- and trimethylase in Drosophila. Taken together, this study provides a springboard for the functional dissection of the COMPASS family members and their role in the regulation of histone H3K4 methylation throughout development in Drosophila.  相似文献   
105.
Chloroplast biogenesis requires synthesis of proteins in the nucleocytoplasm and the chloroplast itself. Nucleus-encoded chloroplast proteins are imported via multiprotein translocons in the organelle’s envelope membranes. Controversy exists around whether a 1-MDa complex comprising TIC20, TIC100, and other proteins constitutes the inner membrane TIC translocon. The Arabidopsis thaliana cue8 virescent mutant is broadly defective in plastid development. We identify CUE8 as TIC100. The tic100cue8 mutant accumulates reduced levels of 1-MDa complex components and exhibits reduced import of two nucleus-encoded chloroplast proteins of different import profiles. A search for suppressors of tic100cue8 identified a second mutation within the same gene, tic100soh1, which rescues the visible, 1 MDa complex-subunit abundance, and chloroplast protein import phenotypes. tic100soh1 retains but rapidly exits virescence and rescues the synthetic lethality of tic100cue8 when retrograde signaling is impaired by a mutation in the GENOMES UNCOUPLED 1 gene. Alongside the strong virescence, changes in RNA editing and the presence of unimported precursor proteins show that a strong signaling response is triggered when TIC100 function is altered. Our results are consistent with a role for TIC100, and by extension the 1-MDa complex, in the chloroplast import of photosynthetic and nonphotosynthetic proteins, a process which initiates retrograde signaling.

Complementary mutations in TIC100 of the chloroplast inner envelope membrane cause reductions or corrective improvements in chloroplast protein import, and highlight a signaling role.

IN A NUTSHELLBackground: Plants harvest energy from the sun and CO2 from the air and convert them into the energy-rich molecules they, and eventually us, are made of. Plants do this, photosynthesis, in bodies called chloroplasts inside their cells. Chloroplasts, made of protein and membrane material, were, before plants evolved, free-living bacteria, but the synthesis of most of their proteins occurs outside them, using information carried by the cell’s nuclear DNA, so most proteins have to be brought into developing chloroplasts, across the double membrane surrounding them, through dedicated, selective channels, formed by TOC (outer) and TIC (inner envelope) proteins. The identity of those channels matters as it helps determine versions of chloroplasts suited for particular environments. Which TIC proteins constitute the inner envelope channel has been a matter of controversy.Question: A mutant Arabidopsis plant called cue8 is slow-to-green (young leaves begin almost white) and shows delayed chloroplast and plant development. We looked for the molecular identity of the CUE8 gene. We also caused further mutations in this mutant and searched whether any corrected the defects in cue8.Findings: We found the mutated gene causing the cue8 defects is the TIC100 gene. This is one essential component of the “TIC 1-MDa complex,” one of the two versions of the TIC import complex under debate. That complex is made of several proteins, all present at reduced levels in cue8. In laboratory assays in which proteins are imported into isolated chloroplasts, cue8 performed worse than normal plants for a photosynthetic and a housekeeping chloroplast protein. A corrective, “suppressor” mutant was identified, and it carried a second mutation in TIC100, one physically complementary to the first one. Both the single and the double (suppressed) mutant still were slow-to-green, which evidences a signaling role for import defects to the nucleus, making photosynthetic genes active or not.Next steps: Surprisingly the grasses, including the cereals, have one core protein of the TIC 1 MDa complex but not the rest (including TIC100). We don’t know how their TIC channels operate. We also need to learn how the information on the defect in protein import, which occurs at the chloroplast envelope, is relayed to the cell’s nucleus (but we do have some clues).  相似文献   
106.
Nano-biocomposites of inorganic and organic components wereprepared to produce long-persistent phosphorescent artificial nacre-like materials. Biodegradable polylactic acid (PLA), graphene oxide (GO), and nanoparticles (13–20 nm) of lanthanide-doped aluminate pigment (NLAP) were used in a simple production procedure of an organic/inorganic hybrid nano-biocomposite. Both polylactic acid and GO nanosheets were chemically modified to form covalent and hydrogen bonding. The high toughness, good tensile strength, and great endurance of those bonds were achieved by their interactions at the interfaces. Long-persistent and reversible photoluminescence was shown by the prepared nacre substrates. Upon excitation at 365 nm, the nacre substrates generated an emission peak at 517 nm. When ultraviolet light was shone on luminescent nacres, they displayed a bright green colour. The high superhydrophobicity of the generated nacres was obtained without altering their mechanical characteristics.  相似文献   
107.
108.
Background:Prostate cancer is known as one of the most prevalent health disorders in the male population globally. The aim of the current study was to evaluate the effects of separate and concomitant use of MK-2206 and salinomycin on prostate cancer cell line.Methods:The antitumor potential of separate and concomitant use of MK-2206 and salinomycin was evaluated in a panel of prostate cancer cell line (PC-3). To get insights into the underlying mechanism of action, different assays including the rate of apoptosis, cell viability, and gene expression were performed in treated prostate cancer cells.Results:A significant reduction was detected in the viability percentage of prostate cancer cells (p< 0.001) and the rate of Akt expression (p< 0.001) in all salinomycin, MK-2206, and salinomycin+MK-2206 groups compared to the negative control group. Furthermore, in comparison with the negative control group, there was a notable increase in both the rate of Bad expression (p< 0.001) and prostate cancer cells apoptosis after salinomycin, MK-2206, and salinomycin+MK-2206 treatments. Moreover, the concomitant use of salinomycin+MK-2206 revealed synergistic improvements regarding the viability of prostate cancer cells and the rate of the Akt and Bad expressions compared to the separate administration of salinomycin and MK-2206 (all p< 0.05)Conclusion:The findings of the present study may contribute to improving the efficacy of the therapies regarding the management of prostate cancer and providing a beneficial strategy in clinical trials.Key Words: Apoptosis, Gene Expression, MK 2206, Prostatic Neoplasms, Salinomycin  相似文献   
109.
KP167 is a novel hypoxia‐activated prodrug (HAP), targeting cancer cells via DNA intercalating and alkylating properties. The single agent and radiosensitizing efficacy of KP167 and its parental comparator, AQ4N, were evaluated in 2D and 3D cultures of luminal and triple negative breast cancer (TNBC) cell lines and compared against DNA damage repair inhibitors. 2D normoxic treatment with the DNA repair inhibitors, Olaparib or KU‐55933 caused, as expected, substantial radiosensitization (sensitiser enhancement ratio, SER0.01 of 1.60–3.42). KP167 induced greater radiosensitization in TNBC (SER0.01 2.53 in MDAMB‐231, 2.28 in MDAMB‐468, 4.55 in MDAMB‐436) and luminal spheroids (SER0.01 1.46 in MCF‐7 and 1.76 in T47D cells) compared with AQ4N. Significant radiosensitization was also obtained using KP167 and AQ4N in 2D normoxia. Although hypoxia induced radioresistance, radiosensitization by KP167 was still greater under 2D hypoxia, yielding SER0.01 of 1.56–2.37 compared with AQ4N SER0.01 of 1.13–1.94. Such data show KP167 as a promising single agent and potent radiosensitiser of both normoxic and hypoxic breast cancer cells, with greater efficacy in TNBCs.  相似文献   
110.
We have identified by immunoblotting and ADP-ribosylation by cholera toxin and pertussis toxin the presence of Mr 43 and 46 KDa Gs, and 39 and 41 KDa Gi;.. subunits in rat parotid gland plasma membranes but not in granule membranes. A Mr 28 KDa polypeptide that served as substrate for ADP-ribosylation by both cholera toxin and pertussis toxin was present exclusively in granule membranes. Photoaffinity crosslinking of [-32P]GTP showed the presence of high molecular weight GTP-binding proteins (Mr 160,100 KDa) in granule membranes. Six low molecular weight GTP-binding proteins (Mr 21–28 KDa) were differentially distributed in both plasma membranes and granule membranes. The present study identifies various GTP-binding proteins in rat parotid gland plasma membranes and granule membranes, and demonstrates the presence of distinct molecular weight GTP-binding proteins in granule membranes. These granule-associated GTP-binding proteins may be involved in secretory processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号