首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10197篇
  免费   584篇
  国内免费   31篇
  2024年   16篇
  2023年   105篇
  2022年   243篇
  2021年   543篇
  2020年   330篇
  2019年   426篇
  2018年   456篇
  2017年   328篇
  2016年   468篇
  2015年   530篇
  2014年   634篇
  2013年   797篇
  2012年   846篇
  2011年   727篇
  2010年   441篇
  2009年   355篇
  2008年   444篇
  2007年   444篇
  2006年   391篇
  2005年   385篇
  2004年   298篇
  2003年   252篇
  2002年   227篇
  2001年   110篇
  2000年   98篇
  1999年   80篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   41篇
  1994年   26篇
  1993年   28篇
  1992年   47篇
  1991年   42篇
  1990年   46篇
  1989年   42篇
  1988年   45篇
  1987年   33篇
  1986年   30篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
211.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   
212.
Lack of temperature sensation of myoelectric prosthetic hand limits the daily activities of amputees.To this end,a non-invasive temperature sensation method is proposed to train amputees to sense temperature with psychophysical sensory substitution.In this study,22 healthy participants took part besides 5 amputee participants.The duration time of the study was 31 days with five test steps according to the Leitner technique.An adjustable temperature mug and a Peltier were used to change the temperature of the water/phantom digits to induce temperature to participants.Also,to isolate the surround-ings and show colors,a Virtual Reality(VR)glass was employed.The statistical results conducted are based on the response of participants with questionnaire method.Using Chi-square tests,it is concluded that participants answer the experiment significantly correctly using the Leitner technique(P value<0.05).Also,by applying the"Repeated Measures ANOVA",it is noticed that the time of numbness felt by participants had significant(P value<0.001)difference.Participants could remember lowest and highest temperatures significantly better than other temperatures(P value<0.001);furthermore,the well-trained amputee participant practically using the prosthesis with 72.58%could identify object's temperature with only once time experimenting the color temperature.  相似文献   
213.
BackgroundSusumu Ohno’s idea that modern vertebrates are degenerate polyploids (concept referred as 2R hypothesis) has been the subject of intense debate for past four decades. It was proposed that intra-genomic synteny regions (paralogons) in human genome are remains of ancient polyploidization events that occurred early in the vertebrate history. The quadruplicated paralogon centered on human HOX clusters is taken as evidence that human HOX-bearing chromosomes were structured by two rounds of whole genome duplication (WGD) events.ResultsEvolutionary history of human HOX-bearing chromosomes (chromosomes 2/7/12/17) was evaluated by the phylogenetic analysis of multigene families with triplicated or quadruplicated distribution on these chromosomes. Topology comparison approach categorized the members of 44 families into four distinct co-duplicated groups. Distinct gene families belonging to a particular co-duplicated group, exhibit similar evolutionary history and hence have duplicated simultaneously, whereas genes of two distinct co-duplicated groups do not share their evolutionary history and have not duplicated in concert with each other.ConclusionThe recovery of co-duplicated groups suggests that “ancient segmental duplications and rearrangements” is the most rational model of evolutionary events that have generated the triplicated and quadruplicated paralogy regions seen on the human HOX-bearing chromosomes.  相似文献   
214.
Exclusion of sodium ions from cells is one of the key salinity tolerance mechanisms in plants. The high-affinity cation transporter (HKT1;5) is located in the plasma membrane of the xylem, excluding Na+ from the parenchyma cells to reduce Na+ concentration. The regulatory mechanism and exact functions of HKT genes from different genotypic backgrounds are relatively obscure. In this study, the expression patterns of HKT1;5 in A and D genomes of wheat were investigated in root and leaf tissues of wild and domesticated genotypes using real-time PCR. In parallel, the K+/Na+ ratio was measured in salt-tolerant and salt-sensitive cultivars. Promoter analysis were applied to shed light on underlying regulatory mechanism of the HKT1;5 expression. Gene isolation and qPCR confirmed the expression of HKT1;5 in the A and D genomes of wheat ancestors (Triticum boeoticum, AbAb and Aegilops crassa, MMDD, respectively). Interestingly, earlier expression of HKT1;5 was detected in leaves compared with roots in response to salt stress. In addition, the salt-tolerant genotypes expressed HKT1;5 before salt-sensitive genotypes. Our results suggest that HKT1;5 expression follows a tissue- and genotype-specific pattern. The highest level of HKT1;5 expression was observed in the leaves of Aegilops, 6 h after being subjected to high salt stress (200 mM). Overall, the D genome allele (HKT1;5-D) showed higher expression than the A genome (HKT1;5-A) allele when subjected to a high NaCl level. We suggest that the D genome is more effective regarding Na+ exclusion. Furthermore, in silico promoter analysis showed that TaHKT1;5 genes harbor jasmonic acid response elements.  相似文献   
215.

Background

Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits.

Results

Seventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI.No sign of rejection was seen in the treated lesions. The collagen implant was invaded by the inflammatory cells at the inflammatory phase, followed by fibroplasia phase in which remnant of the collagen implant were still present while no inflammatory reaction could be seen in the lesions. However, the collagen implant was completely absorbed in the remodeling phase and the newly regenerated tendinous tissue filled the gap. Compared to the controls, the treated lesions showed improved tissue alignment and less peritendinous adhesion, muscle atrophy and fibrosis. They also showed significantly better clinical scoring, indices for water uptake and water absorption, and bioelectrical characteristics than the controls.

Conclusion

This novel collagen implant was biodegradable, biocompatible and possibly could be considered as a substitute for auto and allografts in clinical practice in near future.  相似文献   
216.
Placenta is an important source and target of hormones that contribute to immunological tolerance and maintenance of pregnancy. In preeclampsia (PE), placental calcitriol synthesis is low; whereas pro-inflammatory cytokines levels are increased, threatening pregnancy outcome. Previously, we showed that calcitriol inhibits Th-1 cytokines under experimental inflammatory conditions in normal trophoblasts. However, a study of the regulation of inflammatory cytokines by calcitriol in trophoblasts from a natural inflammatory condition, such as PE, is still lacking. Therefore, the aim of the present study was to investigate calcitriol effects upon TNF-α, IFN-γ, IL-6 and IL-1β in cultured placental cells from preeclamptic women by using qPCR and ELISA. Placentas were collected after cesarean section from preeclamptic women and enriched trophoblastic preparations were cultured in the absence or presence of different calcitriol concentrations during 24 h. In these cell cultures, pro-inflammatory cytokines TNF-α and IL-6 secretion and mRNA expression were downregulated by calcitriol (P < 0.05). No significant effects of calcitriol upon IFN-γ and IL-1β were observed. In addition, basal expression of TNF-α, IL-6 and IL-1β decreased as the cells formed syncytia. Our study supports an important autocrine/paracrine role of placental calcitriol in controlling adverse immunological responses at the feto–maternal interface, particularly in gestational pathologies associated with exacerbated inflammatory responses such as preeclampsia.  相似文献   
217.
Albumin is a multifunctional non-glycosylated, negatively charged plasma protein, with extraordinary ligand-binding and transport properties, antioxidant functions, and enzymatic activities. Physiologically, albumin transports free fatty acids in plasma and contributes in maintaining colloid osmotic pressure. Recent progresses in using albumin as a versatile protein carrier for drug targeting and for improving the pharmacokinetic profile of peptide or protein-based drugs, increased the attempts for improving albumin stability. Studying the thermal stability of camel albumin may provide us not only new clues for designing recombinant albumins, but also molecular insights on camel physiology. This study aims to determine the thermal stability of camel albumin. Fatted camel serum albumin (FCSA) was purified from blood via combination of Cohn’s method and anion-exchange chromatography. Activated charcoal treatment was used to obtain defatted camel serum albumin (CSA). Fluorescence spectroscopy and differential scanning calorimetry (DSC) were used to study thermal denaturation of this protein. The set of fluorescence spectra were deconvoluted using the convex constraint analysis method (CCA). The results from deconvolution of fluorescence spectroscopy and DSC showed three and two components for CSA and FCSA, respectively. The bimodal DSC transition can be attributed to a crevice between domains I and II and formation of two independent thermodynamic domains. The crevice formation can be prevented by fatty acid binding between domains I and II. The calculated values of ?H v/?H cal, approximately 0.4 for CSA and near 1 for FCSA, confirmed the presence of at least one intermediate in thermal unfolding of CSA and the absence of the intermediate for FCSA. The obtained midpoint transition temperature (T m) of FCSA was about 20 °C higher than that of CSA. Such enormous stabilizing effect may be attributed to the fact that fatty acid serves as glue which preserves different domains beside each other and prevents formation of the mentioned intermediate.  相似文献   
218.
The wheat dehydrin DHN-5 has been previously shown to exhibit heat protecting effect on enzymatic activities. In order to understand the molecular mechanism by which DHN-5 exerts its protective function, we performed an approach to dissect the functional domains of DHN-5 responsible for this feature. In two distinct enzymatic assays, we found that the truncated forms of DHN-5 containing only one K- or two K-segments are able to protect albeit to less extent than the wild type protein, lactate dehydrogenase and β-glucosidase against damage induced by various stresses in vitro. However, the YS- and Φ-segments alone have no protective effects on these enzymes. Therefore, our study provides the evidence that the protective function of DHN-5 seems to be directly linked to its K-segments which through their amphipatic α-helical structure, may act to prevent protein aggregation.  相似文献   
219.
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号