首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10336篇
  免费   583篇
  国内免费   32篇
  10951篇
  2024年   26篇
  2023年   115篇
  2022年   356篇
  2021年   543篇
  2020年   330篇
  2019年   423篇
  2018年   452篇
  2017年   328篇
  2016年   469篇
  2015年   531篇
  2014年   636篇
  2013年   801篇
  2012年   847篇
  2011年   729篇
  2010年   441篇
  2009年   354篇
  2008年   446篇
  2007年   444篇
  2006年   390篇
  2005年   385篇
  2004年   298篇
  2003年   253篇
  2002年   227篇
  2001年   110篇
  2000年   98篇
  1999年   80篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   41篇
  1994年   26篇
  1993年   28篇
  1992年   47篇
  1991年   43篇
  1990年   46篇
  1989年   42篇
  1988年   44篇
  1987年   34篇
  1986年   30篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
121.
Aedes albopictus mosquito is an opportunistic blood feeder and has a broad host range. The feeding behavior and habits of this mosquito are liable to increase the transmission potential of arboviruses. The survival and fecundity in A. albopictus fed on different hosts and post-blood meal provision of sugar were investigated in a laboratory-reared colony. Adult survival of caged female A. albopictus that were fed on blood of two different hosts (double meal) was higher than the females fed only on one host (single meal) (mean survival: 70.2 ± 9.6 vs. 55.5 ± 5.5%, respectively) when held in the laboratory for 72 h after blood feeding. Mean survival of females provided 10% sucrose solution (in water) after a single or double blood meal was higher (90.5 ± 6.4% and 89.3 ± 6.5%, respectively) than in the respective groups receiving water only following blood feeding (double meal: 49.0 ± 9.6%; single meal: 45.3 ± 10.9%). Females receiving a double meal were more fecund on average (89.0 ± 6.6 eggs) than females provided a single meal (82.3 ± 8.2 eggs).  相似文献   
122.
The toxic effects of Al(3+) have been studied in 90-days AlCl(3) orally treated male albino rats (n = 7) using (1)H NMR spectroscopy-based metabolic profile of rat serum and urine, serum enzyme tests, behavioral impairment, and histopathology of kidney and liver. Metabolic profile of 90-days Al(3+)-treated rat sera showed significantly elevated levels of alanine, glutamine, beta-hydroxy-butyrate, and acetoacetate and significantly decreased level of acetone when compared with that of control rats. However, metabolic profile of 90-days Al(3+)-treated rat urine showed significantly decreased levels of citrate, creatinine, allantoin, trans-aconitate, and succinate and significantly increased level of acetate when compared to control rats. The overall perturbations observed in the metabolic profile of serum and urine demonstrate the impairment in the tricarboxylic acid cycle, liver and kidney metabolism, which was further reinstated by clinical chemistry and histopathological observations. Moreover, "in vivo" behavioral impairment has also been observed as the indication of aluminum neurotoxicity.  相似文献   
123.
124.
Several chemicals are used in aquaculture to prevent or to treat disease outbreaks. These substances are mainly administered by two different routes: by prolonged immersion or by mixing into the diet. In the case of intensive aquaculture, the chemicals that are most frequently applied by immersion are formaldehyde (FA) 37% and oxytetracycline (OTC). The first is highly effective against most protozoa, as well as some of the most common parasites such as monogenetic trematodes. OTC presents a large spectrum of antibacterial activities and is used to treat systemic bacterial infections that affect fish. Under therapeutic use, FA (37%) is applied prophylactically at 200ml/m(3), whereas OTC is used curatively at 40g/m(3). The goal of the present study is to assess genotoxic and cytotoxic effects associated with exposure of the European sea bass (Dicentrarchus labrax) to FA37% and OTC under the same conditions as those applied in intensive aquaculture systems. To this end the micronucleus (MN) assay was applied in erythrocytes. Our results show that both tested chemicals present genotoxic and cytotoxic potential following a time-dependent pattern. Remarkably, the combined treatment induces a cumulative effect, which is particularly pronounced after 15 days of exposure. This suggests the critical hazards associated with exposure to FA and OTC when applied or released together.  相似文献   
125.
The global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins. Virulence is dependent on the autoactivation of a toxin cysteine protease, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP(6)). Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins. Here we show that C. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP(6)- and inositol pyrophosphate (InsP(7))-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP(6) enhanced the therapeutic actions of oral S-nitrosothiols in mouse models of C. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.  相似文献   
126.
Isolates of Cryptosporidium spp. from human and animal hosts in Iran were characterized on the basis of both the 18S rRNA gene and the Laxer locus. Three Cryptosporidium species, C. hominis, C. parvum, and C. meleagridis, were recognized, and zoonotically transmitted C. parvum was the predominant species found in humans.  相似文献   
127.
Ureteral peristaltic mechanism facilitates urine transport from the kidney to the bladder. Numerical analysis of the peristaltic flow in the ureter aims to further our understanding of the reflux phenomenon and other ureteral abnormalities. Fluid-structure interaction (FSI) plays an important role in accuracy of this approach and the arbitrary Lagrangian-Eulerian (ALE) formulation is a strong method to analyze the coupled fluid-structure interaction between the compliant wall and the surrounding fluid. This formulation, however, was not used in previous studies of peristalsis in living organisms. In the present investigation, a numerical simulation is introduced and solved through ALE formulation to perform the ureteral flow and stress analysis. The incompressible Navier-Stokes equations are used as the governing equations for the fluid, and a linear elastic model is utilized for the compliant wall. The wall stimulation is modeled by nonlinear contact analysis using a rigid contact surface since an appropriate model for simulation of ureteral peristalsis needs to contain cell-to-cell wall stimulation. In contrast to previous studies, the wall displacements are not predetermined in the presented model of this finite-length compliant tube, neither the peristalsis needs to be periodic. Moreover, the temporal changes of ureteral wall intraluminal shear stress during peristalsis are included in our study. Iterative computing of two-way coupling is used to solve the governing equations. Two phases of nonperistaltic and peristaltic transport of urine in the ureter are discussed. Results are obtained following an analysis of the effects of the ureteral wall compliance, the pressure difference between the ureteral inlet and outlet, the maximum height of the contraction wave, the contraction wave velocity, and the number of contraction waves on the ureteral outlet flow. The results indicate that the proximal part of the ureter is prone to a higher shear stress during peristalsis compared with its middle and distal parts. It is also shown that the peristalsis is more efficient as the maximum height of the contraction wave increases. Finally, it is concluded that improper function of ureteropelvic junction results in the passage of part of urine back flow even in the case of slow start-up of the peristaltic contraction wave.  相似文献   
128.
The highly reactive electrophile, methylglyoxal (MG), a break down product of carbohydrates, is a major environmental mutagen having potential genotoxic effects. Previous studies have suggested the reaction of MG with free amino groups of proteins forming advanced glycation end products (AGEs). This results in the generation of free radicals which play an important role in pathophysiology of aging and diabetic complications. MG also reacts with free amino group of nucleic acids resulting in the formation of DNA–AGEs. While the formation of nucleoside AGEs has been demonstrated previously, no extensive studies have been performed to assess the genotoxicity and immunogenicity of DNA–AGEs. In this study we report both the genotoxicity and immunogenicity of AGEs formed by MG–Lys–Cu2+ system. Genotoxicity of the experimentally generated AGEs was confirmed by comet-assay. Spectroscopical analysis and melting temperature studies suggest structural perturbations in the DNA as a result of modification. This might be due to generation of single-stranded regions and destabilization of hydrogen bonds. Immunogenicity of native and MG–Lys–Cu2+-DNA was probed in female rabbits. The modified DNA was highly immunogenic eliciting high titre immunogen specific antibodies, while the unmodified form was almost non-immunogenic. The results show structural perturbations in MG–Lys–Cu2+-DNA generating new epitopes that render the molecule immunogenic.  相似文献   
129.
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufactutring plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l−1, and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 3,000 mg l−1 and in the batch mode was 2,400 mg l−1. The attached biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 1,500 mg l−1 and in the batch mode was 980 mg l−1. Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.  相似文献   
130.
Many experimental and computational studies have identified key protein coding genes in initiation and progression of esophageal squamous cell carcinoma (ESCC). However, the number of researches that tried to reveal the role of long non-coding RNAs (lncRNAs) in ESCC has been limited. LncRNAs are one of the important regulators of cancers which are transcribed dominantly in the genome and in various conditions. The main goal of this study was to use a systems biology approach to predict novel lncRNAs as well as protein coding genes associated with ESCC and assess their prognostic values. By using microarray expression data for mRNAs and lncRNAs from a large number of ESCC patients, we utilized “Weighted Gene Co-expression Network Analysis” (WGCNA) method to make a big coding-non-coding gene co-expression network, and discovered important functional modules. Gene set enrichment and pathway analysis revealed major biological processes and pathways involved in these modules. After selecting some protein coding genes involved in biological processes and pathways related to cancer, we used “LncTar”, a computational tool to predict potential interactions between these genes and lncRNAs. By combining interaction results with Pearson correlations, we introduced some novel lncRNAs with putative key regulatory roles in the network. Survival analysis with Kaplan-Meier estimator and Log-rank test statistic confirmed that most of the introduced genes are associated with poor prognosis in ESCC. Overall, our study reveals novel protein coding genes and lncRNAs associated with ESCC, along with their predicted interactions. Based on the promising results of survival analysis, these genes can be used as good estimators of patients' survival, or even can be analyzed further as new potential signatures or targets for the therapy of ESCC disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号