首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10326篇
  免费   583篇
  国内免费   32篇
  10941篇
  2024年   26篇
  2023年   114篇
  2022年   356篇
  2021年   543篇
  2020年   330篇
  2019年   421篇
  2018年   454篇
  2017年   327篇
  2016年   468篇
  2015年   530篇
  2014年   633篇
  2013年   797篇
  2012年   845篇
  2011年   728篇
  2010年   443篇
  2009年   354篇
  2008年   443篇
  2007年   443篇
  2006年   389篇
  2005年   384篇
  2004年   301篇
  2003年   252篇
  2002年   227篇
  2001年   110篇
  2000年   98篇
  1999年   80篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   41篇
  1994年   27篇
  1993年   28篇
  1992年   49篇
  1991年   42篇
  1990年   48篇
  1989年   43篇
  1988年   45篇
  1987年   33篇
  1986年   31篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.  相似文献   
72.
In this study, we extracted the essential oils of the stem, leaf, and flower of Achillea filipendulina, analyzed them, and studied their antibacterial properties. Of 16, 53, and 35 compounds identified in the stem, leaf, and flowers, respectively, only five are present in all three segments of the plant. The essential oil of the stem was mainly composed of neryl acetate, spathulenol, carvacrol, santolina alcohol, and trans‐caryophyllene oxide. However, the main identified components of leaf were 1,8‐cineole, camphor, ascaridole, trans‐isoascaridole, and piperitone oxide and the main components of the flower oil were ascaridole, trans‐isoascaridole, 1,8‐cineole, p‐cymene, and camphor. The extracted oil from different segments demonstrated varying antibacterial properties against both Gram‐positive and Gram‐negative bacteria, demonstrated by disk, minimum inhibitory concentration, and minimum bactericidal concentration methods. These suggest that the application of all segments of aerial parts of A. filipendulina may have a better therapeutic effect in fighting pathogenic systems.  相似文献   
73.
Consumers’ demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.  相似文献   
74.

Colloidal nanoparticles (NPs) interact with biological fluids such as human plasma to form a protein coating (corona) on the surface of NPs (NP-protein complex). However, the impact of size and type of NPs on binding of the hard corona to the surface of NPs as well as damping of their optical spectra has not been systematically explored. To elucidate the interaction between biological environment (human plasma) and NPs, a photophysical measurement was conducted to quantify the interaction of two different types of NPs (gold (Au) and silver (Ag)) with common human plasma proteins. The colloidal AuNPs and AgNPs were electrostatically stabilized and varied in diameter from 10 to 80 nm in the presence of common human plasma. The sizes of the NPs were determined using transmission electron microscopy (TEM). Optical absorption spectra were obtained for the complexes. Dynamic light scattering (DLS) measurement and zeta potential were used to characterize the sizes, hydrodynamic diameters, and surface charges of the protein-NPs complexes. Protein separation was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to isolate and identify the protein bands. The absorption of proteins to the NPs was found to be strongly dependent on the size and type of NPs. The distance between surface of NPs by absorbed protein bound to the NPs gradually increased with size of NPs, particularly for AgNPs with primary diameter of < 50 nm. The chi-square test proved that AgNPs are a good candidate in sensing the protein complex in human plasma compared with AuNPs mainly for the AgNPs with diameter sized 50 nm.

  相似文献   
75.

The interactions between sodium caseinate (NaCas) and basil seed gum (BSG) in the presence of calcium chloride (CaCl2) were investigated. The phase behavior of the mixed aqueous dispersions and their gels revealed a homogeneous mixture, obtained at the higher concentrations of both CaCl2 and BSG. The Herschel-Bulkley model sufficiently fitted the flow behavior of the mixture solution data. Apparent viscosity increased significantly (p < 0.05) by increasing the concentration of BSG, where the addition of CaCl2 had no significant effect on the viscosity of the samples (p > 0.05). Furthermore, there was an increase in thixotropy due to the higher concentrations of BSG and CaCl2. Based on the frequency sweep test, at the low frequencies, a more gel-like behavior was observed in the case of the higher concentrations of either BSG or CaCl2. The rheological and SEM data suggested that the stronger structure of NaCas-BSG gel in the presence of the higher concentrations of CaCl2 was related to the induction of complex formation between the two biopolymers.

  相似文献   
76.
Nisar  M.  Ali  Z.  Ali  A.  Aman  R.  Park  H. J.  Ullah  I.  Ullah  A.  Yun  D. J. 《Russian Journal of Plant Physiology》2020,67(3):515-520
Russian Journal of Plant Physiology - Plant root architecture modulates during developmental stages and adjusts with the environmental condition. The cytosolic calcium which is a ubiquitous...  相似文献   
77.
Russian Journal of Bioorganic Chemistry - An effective method for synthesizing a series of fifteen new compounds ethyl 3-(2-(3-amino-1,4-dihydroquinoxaline-2-carbonyl)hydrazono )butanoate (II),...  相似文献   
78.
Stressor (biotic as well as abiotic) generally hijack the plant growth and yield characters in hostile environment leading to poor germination of the plants and yield. Among the plant growth promoting rhizobacteria, Azotobacter spp. (Gram-negative prokaryote) are considered to improve the plant health. Various mechanisms are implicated behind improved plant health in Azotobacter spp. inoculated plants. For example, acceleration of phytohormone like Indole-3-Acetic Acid production, obviation of various stressors, nitrogen fixation, pesticides and oil globules degradation, heavy metals metabolization, etc. are the key characteristics of Azotobacter spp. action. In addition, application of this bacteria has also become helpful in the reclamation of soil suggesting to be a putative agent which can be used in the transformation of virgin land to fertile one. Application of pesticides of chemical origin are being put on suspension mode as the related awareness program is still on. As far as the limitations of this microbe is concerned, commercial level formulations availability is still a great menace. Present review has been aimed to appraise the researchers pertaining to utility of Azotobacter spp. in the amelioration of plant health in sustainable agroecosystem. The article has been written with the target to gather maximum information into single pot so that it could reach to the dedicated researchers.  相似文献   
79.
Hemp (Cannabis sativa L.) is an emerging dioecious crop grown primarily for grain, fiber, and cannabinoids. There is good evidence for medicinal benefits of the most abundant cannabinoid in hemp, cannabidiol (CBD). For CBD production, female plants producing CBD but not tetrahydrocannabinol (THC) are desired. We developed and validated high‐throughput PACE (PCR Allele Competitive Extension) assays for C. sativa plant sex and cannabinoid chemotype. The sex assay was validated across a wide range of germplasm and resolved male plants from female and monoecious plants. The cannabinoid chemotype assay revealed segregation in hemp populations, and resolved plants producing predominantly THC, predominantly CBD, and roughly equal amounts of THC and CBD. Cultivar populations that were thought to be stabilized for CBD production were found to be segregating phenotypically and genotypically. Many plants predominantly producing CBD accumulated more than the current US legal limit of 0.3% THC by dry weight. These assays and data provide potentially useful tools for breeding and early selection of hemp.  相似文献   
80.
S-layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S-layer protein present in the Gram-negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta-helical structure for EAR28894 similar to the Caulobacter S-layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S-layer was found surrounding the outer membrane in wild-type cells and completely removed from cells in an EAR28894 deletion mutant. S-layer material also appeared to be “shed” from wild-type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S-layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号