Five novel phenanthroindolizidine alkaloids, namely tylohirsutinine, 13a-methyltylohirsutine, 13a-methyltylohirsutinidine, tylohirsutinidine and 13a-hydroxysepticine, isolated from Tylophora hirsuta together with two unidentified bases are described. Structural studies indicate that the first four alkaloids possess the dibenzo [f, h]-pyrrolo-[1,2b]isoquinoline skeleton present in other Tylophora species, but differ in the presence of unsaturation in ring E or in the presence of an angular methyl function. The fifth alkaloid has been shown to be the 13a-hydroxy analogue of septicine. 相似文献
Chitin is a long unbranched polysaccharide, made up of β-1,4-linked N-acetylglucosamine which forms crystalline fiber-like structure. It is present in the fungal cell walls, insect and crustacean cuticles, nematode eggshells, and protozoa cyst. We provide a critical appraisal on the chemical modifications of chitin and its derivatives in the context of their improved efficacy in medical applications without any side effect. Recent advancement in nanobiotechnology has helped to synthesize several chitin derivatives having significant biological applications. Here, we discuss the molecular diversity of chitin and its applications in enzyme immobilization, wound healing, packaging material, controlled drug release, biomedical imaging, gene therapy, agriculture, biosensor, and cosmetics. Also, we highlighted chitin and its derivatives as an antioxidant, antimicrobial agent, anticoagulant material, food additive, and hypocholesterolemic agent. We envisage that chitin and chitosan-based nanomaterials with their potential applications would augment nanobiotechnology and biomedical industries.
Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53. 相似文献
In this report, we have investigated the binding affinity of tofacitinib with human serum albumin (HSA) under simulated physiological conditions by using UV–visible spectroscopy, fluorescence quenching measurements, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and molecular docking methods. The obtained results demonstrate that fluorescence intensity of HSA gets quenched by tofacitinib and quenching occurs in static manner. Binding parameters calculated from modified Stern–Volmer equation shows that the drug binds to HSA with a binding constant in the order of 105. Synchronous fluorescence data deciphered the change in the microenvironment of tryptophan residue in HSA. UV spectroscopy and DLS measurements deciphered complex formation and reduction in hydrodynamic radii of the protein, respectively. Further DSC results show that tofacitinib increases the thermo stability of HSA. Hydrogen bonding and hydrophobic interaction are the main binding forces between HSA and tofacitinib as revealed by docking results. 相似文献
Coriandrum sativum L. is an annual herb belonging to the family Umbelliferae. It is used as a spice plant in Indian subcontinent and it has several medicinal applications as well. In this present article, an efficient plant regeneration protocol from protoplasts via somatic embryogenesis was established and is reported. This is the first ever protoplast isolation study in Indian local coriander in which plant regeneration was achieved. Hypocotyl-derived embryogenic callus was used as a source of protoplast. The embryogenic callus suspension was prepared by transferring tissues onto rotary-agitated liquid Murashige and Skoog, added with 1.0 mg l?1 2,4-Dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l?1 KIN (6-furfurylaminopurine). The suspension was digested with enzymatic solutions and a combination of cellulase (2.0 %), pectinase (1.0 %), macerozyme (0.02 %) and driselase (0.50 %) induced maximum yield of protoplasts (34.25 × 105). In 1.0 mg l?1 2,4-D + 1.0 mg l?1 KIN containing medium, protoplasts divided well and formed maximum number of microcolonies (14.30/test tube). The protoplast callus (PC) biomass grew well in solid medium. The protoplast embryogenic callus was rich in protein, proline and sugar compared to non-embryogenic PC. The protoplast originated callus later differentiated into somatic embryos. The somatic embryo morphology, scanning electron microscopy and histology of embryo origin and development were investigated and discussed in details in this present communication. In 1.0 mg l?1 2,4-D + 0.5 mg l?1 BA (6-Benzyladenine), maximum number of embryos were formed on microcallus (26.6/callus mass). The embryo matured and germinated into plantlets at a low to moderate rate, highest (31.3 %) embryo germination was observed in 1.0 mg l?1 BA + 0.5 mg l?1 α-Naphthalene acetic acid added medium. The entire process of regeneration took about 4–5 months’ time for recovering plantlets from protoplasts. 相似文献
We have observed previously that the reactions catalyzed by hypoxanthine/guanine phosphoribosyltransferase (HGPRTase) are activated by Mg(II), Mn(II), and Co(II), and we have defined the mechanism by which these activations proceed [Biochemistry 22, 3419-3424 (1983)]. A more extensive survey of the kinds of metal ions that will activate the HGPRTase catalysis now has been completed through the use of an HPLC assay procedure. Although Fe(II) and Ca(II) are unable to activate this reaction, a significant activation was achieved with the addition of spectroscopically pure Zn(II) to the assay solution. In addition some IMP synthesis resulted from the addition of Ni(II) to the assay mixture. Both the Zn(II) and Ni(II) kinetic effects on HGPRTase over a limited metal ion concentration range have been analyzed through the use of curve-fitting exercises. These results, in addition to the similar pH profiles for the activations by Mg(II), Mn(II), Co(II), and Zn(II), suggest that all of these metal ions activate the HGPRTase-catalyzed synthesis of IMP by way of the same mechanism [model II as defined by London and Steck, Biochemistry 8, 1767-1779 (1969)], during which two divalent ions bind to the HGPRTase active site per molecule of PRibPP. 相似文献
Selected phage clones expressing a peptide with high binding affinity for recombinant human lactoferrin or von Willebrand factor (vWF) were covalently coupled to macroporous poly(dimethylacrylamide) monolithic column. Large pore size (10-100 microm) of macroporous poly(dimethylacrylamide) makes it possible to couple long (1 microm) phage particles as ligands without any risk of blocking the monolithic column. The macroporous monolithic columns were successfully used for the direct affinity capture of target proteins from particulate containing feeds like milk containing casein micelles and fat globules (1-10 microm in size) or even whole blood containing blood cells (up to 20 microm in size). The newly developed platform based on selected bacteriophages immobilized within macropores of the monolithic cryogels presents a convenient alternative to antibodies for fast and selective development of the specific adsorbent. 相似文献
A sensitive gas chromatography/mass spectrometry (GC/MS) method was developed to measure nitrosamine-haemoglobin adducts (HPB-Hb) (4-hydroxy-3-pyridinyl-1-butanone) at trace levels in red blood cells of smoking and non-smoking mothers and their newborn babies. GC/MS methods with chemical ionization (CI) of methane reagent gas in both positive and negative ion mode as well as electron ionization (EI) were studied to determine differences in sensitivity among the various ionization methods. Detection limits using both positive and negative chemical ionization modes were found to be 30 fmol HPB, whereas detection using electron impact modes yielded a detection limit of 80 fmol HBP. In order to apply the various methods of detection to tobacco-exposed samples from human populations, we characterized adduct levels in maternal as well as paired fetal samples obtained from mothers exposed to tobacco smoke during pregnancy. Maternal samples were characterized using serum cotinine levels and were classified as non-smokers, passively smoke-exposed women, less than one pack per day smokers and greater than one pack per day smokers. Paired maternal and fetal blood samples were obtained at delivery for qualitative and qualitative analysis of nitrosamine adducts. Comparative derivatization of HPB released under alkaline hydrolysis conditions was performed using O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) and 2,3,4,5,6-pentafluorobenzoylchloride (PFBC). Both negative CI and positive CI modes of analysis were compared to the more widely accepted EI modes of mass spectrometric analysis. These results suggest that both NICI and PICI modes of detection offer a greater sensitivity of adduct characterization when compared with EI ionization techniques and that either NICI or PICI modes are preferably applicable towards the detection of human biomarker assessment of tobacco-related nitrosamines. 相似文献