首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10676篇
  免费   600篇
  国内免费   34篇
  11310篇
  2024年   28篇
  2023年   119篇
  2022年   366篇
  2021年   561篇
  2020年   340篇
  2019年   431篇
  2018年   464篇
  2017年   344篇
  2016年   482篇
  2015年   544篇
  2014年   650篇
  2013年   822篇
  2012年   865篇
  2011年   754篇
  2010年   452篇
  2009年   364篇
  2008年   459篇
  2007年   469篇
  2006年   412篇
  2005年   401篇
  2004年   310篇
  2003年   263篇
  2002年   233篇
  2001年   119篇
  2000年   107篇
  1999年   86篇
  1998年   61篇
  1997年   32篇
  1996年   38篇
  1995年   41篇
  1994年   27篇
  1993年   31篇
  1992年   47篇
  1991年   44篇
  1990年   48篇
  1989年   44篇
  1988年   46篇
  1987年   36篇
  1986年   32篇
  1985年   38篇
  1984年   33篇
  1983年   28篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   18篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.  相似文献   
995.
As the result of surveying the relevant type specimens, together with macro‐ and micro‐morphological studies, chromosome counting and ITS sequencing, Astragalus trifoliastrum was found to be a species independent of A. laguriformis (with which it has peviously been synonymized). In contrast, A. wanensis, assumed to be a synonym of A. trifoliastrum, indeed appears to be identical with A. trifoliastrum. The diploid chromosome number of 2n = 16 is reported for the first time for A. trifoliastrum.  相似文献   
996.
Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2% ± 5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces.  相似文献   
997.
998.
999.
During nuclear DNA replication, proofreading-deficient DNA polymerase α (Pol α) initiates Okazaki fragment synthesis with lower fidelity than bulk replication by proofreading-proficient Pol δ or Pol ε. Here, we provide evidence that the exonuclease activity of mammalian flap endonuclease (FEN1) excises Pol α replication errors in a MutSα-dependent, MutLα-independent mismatch repair process we call Pol α-segment error editing (AEE). We show that MSH2 interacts with FEN1 and facilitates its nuclease activity to remove mismatches near the 5′ ends of DNA substrates. Mouse cells and mice encoding FEN1 mutations display AEE deficiency, a strong mutator phenotype, enhanced cellular transformation, and increased cancer susceptibility. The results identify a novel role for FEN1 in a specialized mismatch repair pathway and a new cancer etiological mechanism.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号