首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10308篇
  免费   581篇
  国内免费   32篇
  10921篇
  2024年   26篇
  2023年   114篇
  2022年   356篇
  2021年   542篇
  2020年   330篇
  2019年   421篇
  2018年   452篇
  2017年   327篇
  2016年   468篇
  2015年   530篇
  2014年   633篇
  2013年   797篇
  2012年   844篇
  2011年   726篇
  2010年   440篇
  2009年   354篇
  2008年   443篇
  2007年   443篇
  2006年   389篇
  2005年   384篇
  2004年   298篇
  2003年   252篇
  2002年   227篇
  2001年   110篇
  2000年   98篇
  1999年   80篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   41篇
  1994年   26篇
  1993年   28篇
  1992年   47篇
  1991年   42篇
  1990年   46篇
  1989年   42篇
  1988年   44篇
  1987年   33篇
  1986年   30篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
Placenta is an important source and target of hormones that contribute to immunological tolerance and maintenance of pregnancy. In preeclampsia (PE), placental calcitriol synthesis is low; whereas pro-inflammatory cytokines levels are increased, threatening pregnancy outcome. Previously, we showed that calcitriol inhibits Th-1 cytokines under experimental inflammatory conditions in normal trophoblasts. However, a study of the regulation of inflammatory cytokines by calcitriol in trophoblasts from a natural inflammatory condition, such as PE, is still lacking. Therefore, the aim of the present study was to investigate calcitriol effects upon TNF-α, IFN-γ, IL-6 and IL-1β in cultured placental cells from preeclamptic women by using qPCR and ELISA. Placentas were collected after cesarean section from preeclamptic women and enriched trophoblastic preparations were cultured in the absence or presence of different calcitriol concentrations during 24 h. In these cell cultures, pro-inflammatory cytokines TNF-α and IL-6 secretion and mRNA expression were downregulated by calcitriol (P < 0.05). No significant effects of calcitriol upon IFN-γ and IL-1β were observed. In addition, basal expression of TNF-α, IL-6 and IL-1β decreased as the cells formed syncytia. Our study supports an important autocrine/paracrine role of placental calcitriol in controlling adverse immunological responses at the feto–maternal interface, particularly in gestational pathologies associated with exacerbated inflammatory responses such as preeclampsia.  相似文献   
992.
We reported herein an efficient, environmentally friendly synthesis of hydrazine carboxamides (6a–l) in a water-glycerol (6:4) solvent system using ultrasonic irradiation. Ultrasonicated reactions were found to be much faster and more productive than conventional synthesis. The prepared compounds (6a–l) were tested against nine panels of 60 cancer cell lines according to the National Cancer Institute (NCI US) protocol. N-(4-Chlorophenyl)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carboxamide (6b) was discovered to be promising anticancer agents with higher sensitivity against CCRF-CEM, HOP-92, UO-31, RMPI-8226, HL-60(TB), and MDA-MB-468 with percent growth inhibitions (%GIs) of 143.44, 33.46, 33.21, 33.09, 29.81, and 29.55 respectively. Compounds (6a–l) tested showed greater anticancer activity than Imatinib, except for compound 6k. Compounds 6b and 6c were found to be lethal on the CCRF-CEM leukaemia cell line, with %GIs of 143.44 and 108.91, respectively. Furthermore, molecular docking analysis was performed to investigate ligand binding affinity at the active site of epidermal growth factor (EGFR).  相似文献   
993.
Abstract An new water-soluble Pd(II) complex, 2,2'-bipyridin n-butyl dithiocarbamato Pd(II) nitrate has been synthesized. The Pd(II) complex has been characterized by elemental analysis and conductivity measurements as well as spectroscopic methods such as infrared, 1H NMR, and ultraviolet-visible. The interaction between this new design Pd(II)-complex, an anti-tumor component, with carrier proteins of β-lactoglobulin-A and -B (BLG-A and -B) were studied at different temperatures of 27, 37, 42, and 47 °C by fluorescence spectroscopy and far-UV circular dichroism (CD) spectrophotometric techniques. A strong fluorescence quenching interaction of Pd(II) complex with BLG-A and -B was observed at different temperatures. The binding parameters were evaluated by fluorescence quenching method. The thermodynamic parameters, including ΔH°, ΔS°, and ΔG° were calculated by fluorescence quenching method indicated that the electrostatic and hydrophobic forces might play a major role in the interactions of Pd(II) complex with BLG-A and -B, respectively. The distances between donors (Trps of the BLG-A and -B) and acceptor (Pd(II) complex) were obtained according to the fluorescence resonance energy transfer (FRET). Far-UV CD studies showed that the Pd(II) complex did not represent any significant changes in the secondary structures of BLG- A and -B. The difference in the interaction properties observed for BLG-A and -B with Pd(II) complex is related to the difference in the amino acid sequences between these two variants.  相似文献   
994.
The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.  相似文献   
995.
Successful clinical experience of using cisplatin and its derivatives in cancer therapy has encouraged scientists to synthesize new metal complexes with the aim of interacting with special targets such as proteins In this regard, biological effects of [Pt(FIP)(Phen)](NO3)2 compound which contains a novel phen-imidazole ligand, FIP, was investigated on bovine liver catalase (BLC) structure and function. Various spectroscopic methods such as UV–visible, fluorescence, and circular dichroism (CD) were applied at two temperatures 25 and 37°C for kinetics and structural studies. As a consequence, the enzymatic activity decreased slightly with increasing the platinum compound’s concentration up to 30 μM and then remained constant at near 80% after this concentration. On the other hand, the fluorescence quenching measurements revealed that despite slight changes in activity, catalase experiences notable alterations in three-dimensional environment around the chromophores of the enzyme structure with increasing platinum complex concentration. Moreover, quenching data showed that BLC has two binding sites for Pt complex and hydrogen bonding interactions play a major role in the binding process. Furthermore, CD spectroscopy data showed that Pt(II) complex induces significant decrease in α-helix content of the secondary structure of BLC, but notable increase in random coil proportion accompanying a slight decrease in β-sheet content. All in all, hydrogen bonding interactions which are mainly involved in the binding process of the novel phen-imidazole compound to BLC significantly alter the protein structure but slightly change its function. This might be a promising outcome for chemotherapists and medicinal chemists to investigate in vivo properties of this novel metal complex with significant binding tendency to a macromolecule in the low concentrations without decreasing its intrinsic function.  相似文献   
996.
Cd36 is a small-molecular-weight integral membrane protein expressed in a diverse, but select, range of cell types. It has an equally diverse range of ligands and physiological functions, which has implicated Cd36 in a number of diseases including insulin resistance, diabetes, and, most notably, atherosclerosis. The protein is reported to reside in detergent-resistant microdomains within the plasma membrane and to form homo- and hetero-intermolecular interactions. These data suggest that this class B scavenger receptor may gain functionality for ligand binding, and/or ligand internalization, by formation of protein complexes at the cell surface. Here, we have overexpressed Cd36 in insect cells, purified the recombinant protein to homogeneity, and analyzed its stability and solubility in a variety of nonionic and zwitterionic detergents. Octylglucoside conferred the greatest degree of stability, and by analytical ultracentrifugation we show that the protein is monomeric. A solid-phase ligand-binding assay demonstrated that the purified monomeric protein retains high affinity for acetylated and oxidized low-density lipoproteins. Therefore, no accessory proteins are required for interaction with ligand, and binding is a property of the monomeric fold of the protein. Thus, the highly purified and functional Cd36 should be suitable for crystallization in octylglucoside, and the in vitro ligand-binding assay represents a promising screen for identification of bioactive molecules targeting atherogenesis at the level of ligand binding.  相似文献   
997.
Transplantation of neural-like cells is considered as a promising therapeutic strategy developed for neurodegenerative disease in particular for ischemic stroke. Since cell survival is a major concern following cell implantation, a number of studies have underlined the protective effects of preconditioning with hypoxia or hypoxia mimetic pharmacological agents such as deferoxamine (DFO), induced by activation of hypoxia inducible factor-1 (HIF-1) and its target genes. The present study has investigated the effects of DFO preconditioning on some factors involved in cell survival, angiogenesis, and neurogenesis of neural-like cells derived from human Wharton’s jelly mesenchymal stem cells (HWJ-MSCs) in presence of hydrogen peroxide (H2O2). HWJ-MSCs were differentiated toward neural-like cells for 14 days and neural cell markers were identified using immunocytochemistry. HWJ-MSC-derived neural-like cells were then treated with 100 µM DFO, as a known hypoxia mimetic agent for 48 h. mRNA and protein expression of HIF-1 target genes including brain-derived neurotrophic factors (BDNF) and vascular endothelial growth factor (VEGF) significantly increased using RT-PCR and Western blotting which were reversed by HIF-1α inhibitor, while, gene expression of Akt-1, Bcl-2, and Bax did not change significantly but pAkt-1 was up-regulated as compared to poor DFO group. However, addition of H2O2 to DFO-treated cells resulted in higher resistance to H2O2-induced cell death. Western blotting analysis also showed significant up-regulation of HIF-1α, BDNF, VEGF, and pAkt-1, and decrease of Bax/Bcl-2 ratio as compared to poor DFO. These results may suggest that DFO preconditioning of HWJ-MSC-derived neural-like cells improves their tolerance and therapeutic potential and might be considered as a valuable strategy to improve cell therapy.  相似文献   
998.
Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented.  相似文献   
999.
Breast cancer is the second leading cause of cancer death among women, and its related treatment has been attracting significant attention over the past decades. Among the various treatments, targeted therapy has shown great promise as a precision treatment, by binding to cancer cell‐specific biomarkers. So far, great achievements have been made in targeted therapy of breast cancer. In this review, we first discuss cell‐specific biomarkers, which are not only useful for classification of breast cancer subtyping but also can be utilized as goals for targeted therapy. Then, the innovative and generic‐targeted biopharmaceuticals for breast cancer, including monoclonal antibodies, non‐antibody proteins and small molecule drugs, are reviewed. Finally, we provide our outlook on future developments of biopharmaceuticals, and provide solutions to problems in this field.  相似文献   
1000.
BackgroundAmino acids have an important role in metabolism and may affect COVID-19-related outcomes. In our study, the amino acid serum level of hospitalized COVID19 patients was evaluated to determine a new treatment strategy.MethodsThe amino acid profile covering 43 amino acids in 68 subjects, comprising 30 (14 men and 16 women) controls and 38 (16 men and 22 women) COVID-19 patients, were examined. The amino acid profiles of the participants were screened by LC-MS/MS.ResultsCompared with the control group, serum levels of 27 amino acids increased in the patient group. Alpha-aminopimelic acid, sarcosine, and hydroxyproline amino acids were considerably higher in the control group than in the patient group (p<0.0001). There was no notable difference among control group and the case group for 13 amino acids (p≥0.05). A significant positive correlation was seen among the control and the patient groups in the mean amino acid values (r=0.937; p<0.0001).ConclusionsThese results postulated a clear picture on the serum levels of amino acid in the COVID-19 patients. Serum amino acids measured in hospitalized COVID-19 patients can explain the patient''s metabolic status during the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号