首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   43篇
  2020年   4篇
  2019年   9篇
  2018年   9篇
  2017年   2篇
  2016年   10篇
  2015年   9篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1985年   1篇
排序方式: 共有131条查询结果,搜索用时 281 毫秒
71.
To date, publicly available plastid genomes of legumes have for the most part been limited to the subfamily Papilionoideae. Here we report 13 new plastid genomes of legumes spanning all three subfamilies. The genomes representing Caesalpinioideae and Mimosoideae are highly conserved in gene content and gene order, similar to the ancestral angiosperm genome organization. Genomes within the Papilionoideae, however, have reduced sizes due to deletions in nine intergenic spacers primarily in the large single copy region. Our study also indicates that rps16 has been independently lost at least five times in legumes, with additional gene and intron losses scattered among the papilionoids. Additionally, genera from two distinct lineages within the papilionoids, Lupinus and Robinia, have a parallel inversion of 36 and 39 kb, respectively. This parallel inversion is novel as it appears to be caused by a 29 bp repeat within two trnS genes. This repeat is present in all available legume plastid genomes indicating that there is the potential for this inversion to be present in more species. This case of a homoplasious inversion is also evidence that some inversion events may not be reliable phylogenetic markers.  相似文献   
72.
73.
74.
Drought is one of the most emerging threat that causes a severe reduction in cotton plant growth and development. Being cotton is a major cash crop has great threat to prevailing drought events in Pakistan. A field experiment was conducted in Kharif season 2018 at Research Area of MNS-University of Agriculture, Multan, Pakistan to assess the role of foliar applied kaolin and jasmonic acid on vegetative growth, gas exchange and reproductive traits of cotton under normal irrigated and artificial water deficit conditions. The experiment was laid -out in a factorial randomized complete block design with split – split plot arrangement. Main plots were allocated for irrigation levels, sub-plots for two -cotton genotypes viz. NIAB − 878 and SLH − 19 while sub – sub plots for treatments of kaolin and Jasmonic acid. Water deficit stress was created by skipping irrigation at flowering for 21 days. Foliar sprays of Kaolin (5%, w/v) and Jasmonic acid (100 μM) were applied alone or in combination at 60 days after planntinon both to normal irrigated and water-stresse skip irrigation while irrigation water alone was sprayed in control plots. Both cotton genotypes responded variably to normal irrigated and skip conditions. Skipping irrigation for up to 21 days at flowering caused a significant decrease in leaf relative water content, SPAD values, net photosynthetic rate and seed cotton yield in both the genotypes. Seed cotton yield showed an overall decline of 24.7% in skip over Normal irrigated crop. The genotype NIAB − 878 produced maximum seed cotton yield of 3.304 Mg ha−1 in normal that dropped to 2.579 Mg ha−1 in skip, thus showing an average decline of 21.9 %. Similarly, SLH − 19 produced 2.537 Mg ha−1 seed cotton under normal that dropped to 1.822 Mg ha−1 in skip, showing an average decline of 28.2%. The Application of Kaolin and JA Jasmonic acid, either applied individually or in combination, improved vegetative and reproductive development of both cotton varieties in normal and skip regimes. However, combined kaolin and Jasmonic Acid application proved to be more beneficial in terms of seed cotton production and other parameters studied.  相似文献   
75.
Toxicity induced by heavy metals deteriorates soil fertility status. It also adversely affects the growth and yield of crops. These heavy metals become part of the food chain when crops are cultivated in areas where heavy metals are beyond threshold limits. Cadmium (Cd) and nickel (Ni) are considered the most notorious ones among different heavy metals. The high water solubility of Cd made it a potential toxin for plants and their consumers. Accumulation of Ni in plants, leaves, and fruits also deteriorates their quality and causes cancer in humans when such a Ni-contaminated diet is used regularly. Both Cd and Ni also compete with essential nutrients of plants, making the fertility status of soil poor. To overcome this problem, the use of activated carbon biochar can play a milestone role. In the recent past application of activated carbon biochar is gaining more and more attention. Biochar sorb the Cd and Ni and releases essential micronutrients that are part of its structure. Many micropores and high cation exchange capacity make it the most acceptable organic amendment to improve soil fertility and immobilize Cd and Ni. In addition to improving water and nutrients, soil better microbial proliferation enhances the soil rhizosphere ecosystem and nutrient cycling. This review has covered Cd and Ni harmful effects on crop yield and their immobilization by activated carbon biochar. The focus was made to elaborate on the positive effects of biochar on crop yield and soil health.  相似文献   
76.
The present study was carried out, using standard techniques, to identify and count the bacterial contamination of hand air dryers, used in washrooms. Bacteria were isolated from the air flow, outlet nozzle of warm air dryers in fifteen air dryers used in these washrooms. Bacteria were found to be relatively numerous in the air flows. Bacterially contaminated air was found to be emitted whenever a warm air dryer was running, even when not being used for hand drying. Our investigation shows that Staphylococcus haemolyticus, Micrococcus luteus, Pseudomonas alcaligenes, Bacillus cereus and Brevundimonad diminuta/vesicularis were emitted from all of the dryers sampled, with 95% showing evidence of the presence of the potential pathogen S. haemolyticus. It is concluded that hot air dryers can deposit pathogenic bacteria onto the hands and body of users. Bacteria are distributed into the general environment whenever dryers are running and could be inhaled by users and none-users alike. The results provide an evidence base for the development and enhancement of hygienic hand drying practices.  相似文献   
77.
Bismuth salicylate was found to inhibit the growth of a range of bacteria and yeast, “Candida albicans”. In general the growth of bacteria did not result in increase in bismuth solubilisation, in contrast, bismuth solubilisation increased following the growth of C. albicans. A significant increase in the biomass (dry weight) of Aspergillus niger and Aspergillus oryzae occurred in vitro when these fungi were grown in the presence of bismuth salicylate. Biomass increase occurred over a range of bismuth compound additions, which in the case of A. oryzae was associated with increase in the solubilisation of the insoluble bismuth compounds.  相似文献   
78.
Oligonucleotide-based therapeutics have the capacity to engage with nucleic acid immune sensors to activate or block their response, but a detailed understanding of these immunomodulatory effects is currently lacking. We recently showed that 2′-O-methyl (2′OMe) gapmer antisense oligonucleotides (ASOs) exhibited sequence-dependent inhibition of sensing by the RNA sensor Toll-Like Receptor (TLR) 7. Here we discovered that 2′OMe ASOs can also display sequence-dependent inhibitory effects on two major sensors of DNA, namely cyclic GMP-AMP synthase (cGAS) and TLR9. Through a screen of 80 2′OMe ASOs and sequence mutants, we characterized key features within the 20-mer ASOs regulating cGAS and TLR9 inhibition, and identified a highly potent cGAS inhibitor. Importantly, we show that the features of ASOs inhibiting TLR9 differ from those inhibiting cGAS, with only a few sequences inhibiting both pathways. Together with our previous studies, our work reveals a complex pattern of immunomodulation where 95% of the ASOs tested inhibited at least one of TLR7, TLR9 or cGAS by ≥30%, which may confound interpretation of their in vivo functions. Our studies constitute the broadest analysis of the immunomodulatory effect of 2′OMe ASOs on nucleic acid sensing to date and will support refinement of their therapeutic development.  相似文献   
79.
MeltMADGE reconfigures the mutation scanning process of denaturing gradient gel electrophoresis so that the independent variable is time rather than space and the dependent (denaturing) variable is temperature rather than concentration of chemical denaturant. Use of a thermal ramp enables the use of a homogeneous gel and therefore of high-density arrays of wells such as those of microplate array diagonal gel electrophoresis (MADGE). In this configuration, electrophoresis of products on 10-12 96-well meltMADGE gels can be conducted in a 1- to 2-liter tank in a 1- to 2-h run, enabling the scanning of a target amplicon in over 1,000 subjects simultaneously. Gels are read by imaging the fluorescence of UV-excited ethidium bromide, giving a simple, economical system for identifying rarer sequence variants in target genes; it is suitable for large-scale case-control or population studies and other comparable applications. Different amplicons with similar melting characteristics can also be combined in the same run.  相似文献   
80.
Successional patterns are dependent on the nature of the substratum, water flow, concentrations of organics as well as the availability of bacteria, algal spores and invertebrate larvae in the coastal environment. Bacteria play an especially important role in biofilm formation as they are generally the earliest colonizers. In the present study, both winter and summer biofilm succession patterns were examined on glass coverslips inverted on experimental racks attached at two tidal levels on a sheltered shore in Hong Kong. In the succession, bacteria were followed by diatoms and cyanobacteria. Encrusting algae appeared in the late stages of the experiment (day 80 in summer and day 60 in winter). Colonization by bacteria was much slower in summer and their density remained low throughout the experimental period. The first appearance of diatoms and cyanobacteria, however, was more rapid in the summer. Bacteria and diatoms on the low-shore surfaces also had a faster succession rate than on the high-shore surfaces, suggesting that desiccation/aerial temperature are the causal factors for such differences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号