首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2349篇
  免费   174篇
  国内免费   2篇
  2525篇
  2023年   7篇
  2022年   33篇
  2021年   46篇
  2020年   41篇
  2019年   61篇
  2018年   58篇
  2017年   56篇
  2016年   84篇
  2015年   116篇
  2014年   157篇
  2013年   189篇
  2012年   211篇
  2011年   203篇
  2010年   118篇
  2009年   97篇
  2008年   140篇
  2007年   160篇
  2006年   120篇
  2005年   97篇
  2004年   101篇
  2003年   124篇
  2002年   79篇
  2001年   12篇
  2000年   16篇
  1999年   15篇
  1998年   16篇
  1997年   12篇
  1996年   20篇
  1995年   13篇
  1994年   14篇
  1993年   15篇
  1992年   7篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   9篇
  1985年   5篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1969年   3篇
  1962年   2篇
排序方式: 共有2525条查询结果,搜索用时 15 毫秒
201.
Oxidant stress plays a significant role in hypoxic-ischemic injury to the susceptible microvascular endothelial cells. During oxidant stress, lysophosphatidic acid (LPA) concentrations increase. We explored whether LPA caused cytotoxicity to neuromicrovascular cells and the potential mechanisms thereof. LPA caused a dose-dependent death of porcine cerebral microvascular as well as human umbilical vein endothelial cells; cell death appeared oncotic rather than apoptotic. LPA-induced cell death was mediated via LPA(1) receptor, because the specific LPA(1) receptor antagonist THG1603 fully abrogated LPA's effects. LPA decreased intracellular GSH levels and induced a p38 MAPK/JNK-dependent inducible nitric oxide synthase (NOS) expression. Pretreatment with the antioxidant GSH precursor N-acetyl-cysteine (NAC), as well as with inhibitors of NOS [N(omega)-nitro-l-arginine (l-NNA); 1400W], significantly prevented LPA-induced endothelial cell death (in vitro) to comparable extents; as expected, p38 MAPK (SB203580) and JNK (SP-600125) inhibitors also diminished cell death. LPA did not increase indexes of oxidation (isoprostanes, hydroperoxides, and protein nitration) but did augment protein nitrosylation. Endothelial cytotoxicity by LPA in vitro was reproduced ex vivo in brain and in vivo in retina; THG1603, NAC, l-NNA, and combined SB-203580 and SP600125 prevented the microvascular rarefaction. Data implicate novel properties for LPA as a modulator of the cell redox environment, which partakes in endothelial cell death and ensued neuromicrovascular rarefaction.  相似文献   
202.
Curcumin is a phytochemical with antiinflammatory, antioxidant and anticarcinogenic activities. Apparently, curcumin is not genotoxic in vivo, but in vitro copper and curcumin interactions induce genetic damage. The aim of this study was to test if in vivo copper excess induces DNA damage measured by comet and micronucleus assays in the presence of curcumin. We tested 0.2% curcumin in Balb-C mice at normal (13 ppm) and high (65, 130 and 390 ppm) copper ion concentrations. The comet and micronucleus assays were performed 48 hr after chemical application. Comet tail length in animals treated with 0.2% curcumin was not significantly different from the control. Animals exposed to copper cations (up to 390 ppm) exhibited higher oxidative DNA damage. Curcumin reduced the DNA damage induced by 390 ppm copper. We observed statistically significant increase in damage in individuals exposed to 390 ppm copper versus the control or curcumin groups, which was lowered by the presence of curcumin. Qualitative data on comets evidenced that cells from individuals exposed to 390 ppm copper had longer tails (categories 3 and 4) than in 390 ppm copper + curcumin. A statistically significant increase in frequency of micronucleated erythrocytes (MNE/10000TE) was observed only in 390 ppm copper versus the control and curcumin alone. Also cytotoxicity measured as the frequency of polychromatic erythrocytes (PE/1000TE) was attributable to 390 ppm copper. The lowest cytotoxic effect observed was attributed to curcumin. In vivo exposure to 0.2% curcumin for 48 hr did not cause genomic damage, while 390 ppm copper was genotoxic, but DNA damage induced by 390 ppm copper was diminished by curcumin. Curcumin seems to exert a genoprotective effect against DNA damage induced by high concentrations of copper cations. The comet and micronucleus assays prove to be suitable tools to detect DNA damage by copper in the presence of curcumin.  相似文献   
203.
204.
205.
The endochitinase gene ech42 from Trichoderma atroviride was cloned and expressed in Pichia pastoris using a constitutive expression system. Over 98% of the recombinant protein was secreted into the culture medium as glycoprotein. A high endochitinase concentration, 186 mg/L with a specific enzyme activity of 14,128 Umg(-1) was produced. The optimal enzyme kinetic parameters for the recombinant protein were identical to those reported for the enzyme isolated from T. atroviride. The recombinant endochitinase possesses suitable features for biotechnological applications, such as activity at acidic pH and thermostability.  相似文献   
206.
Legume intake could specifically protect against lipid peroxidation in addition to the effects associated to weight loss when included in hypocaloric diets. Thus, 30 obese subjects (age: 36 +/- 8 years and BMI: 32.0 +/- 5.3 kg/m(2)) were nutritionally treated by a 8-week energy restriction ( - 30% energy expenditure) with a legume enriched diet (4 days/week servings, [image omitted] ) or without legumes (control diet (CD), [image omitted] ). Body weight, circulating cholesterol, oxidized LDL (ox-LDL), malondialdehyde (MDA) and urinary 8-isoprostane F(2alpha) (8-iso-PGF(2alpha)) were measured at baseline and at endpoint. After the nutritional intervention, all obese subjects lost weight, specially those individuals who followed the legumes-enriched diet as compared to the CD ( - 7.7 +/- 3 vs. - 5.3 +/- 2.7%; p = 0.023), which was accompanied by marked decreases in total cholesterol levels (p < 0.001) and statistically significant diet-related reductions on plasma ox-LDL, plasma MDA and urinary 8-iso-PGF(2alpha) output. Therefore, a balanced diet with moderate caloric restriction including 4 day/week legume servings empowered the oxidative stress improvement related to weight loss through a reduction in lipid peroxidation as compared to a control hypocaloric diet.  相似文献   
207.
We studied the effects of intense exercise on the neutrophil antioxidant enzyme activities and gene expression. Blood samples were taken from seven cyclists in basal conditions and 3 h after two competition stages of 165 km. Serum creatine kinase (CK) activity, plasma carbonyl derivatives and uric acid levels increased after exercise. The cycling stage induced neutrophilia and increased myeloperoxidase (MPO) activity and reactive oxygen species (ROS) production. Antioxidant enzyme activities (catalase, glutathione peroxidase and superoxide dismutase) decreased after exercise, although gene expression increased. Immunocytochemistry showed catalase (CAT) enzyme equally distributed between the cytoplasm and organelles before exercise, and after exercise the cytoplasmic CAT levels were reduced and were absent in the compartments. After in vitro stimulation with opsonized zymosan (OZ) the extracellular CAT levels increased. This suggests a CAT secretion in order to avoid neutrophil-induced oxidative damage at a local level or to regulate the function of ROS as extracellular signalling molecules.  相似文献   
208.
The deleterious effects of H2O2 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities. Inhibitory effect of H2O2 on respiratory complexes was almost completely recovered by β-mercaptoethanol treatment. H2O2 treatment resulted in full resistance to QO site inhibitor myxothiazol and thus it is suggested that the quinol oxidase site (QO) of complex III is the target for H2O2. H2O2 did not modify basal levels of lipid peroxidation in yeast mitochondria. However, H2O2 addition to rat brain and liver mitochondria induced an increase in lipid peroxidation. These results are discussed in terms of the known physiological differences between mammalian and yeast mitochondria.  相似文献   
209.
In animal models of conotruncal heart defects, an abnormal calcium sensitivity of the contractile apparatus and a depressed L-type calcium current have been described. Sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) is a membrane protein that catalyzes the ATP-dependent transport of Ca(2+) from the cytosol to the SR. The activity of SERCA is inhibited by phospholamban (PLN) and sarcolipin (SLN), and all these proteins participate in maintaining the normal intracellular calcium handling. Ryanodine receptors (RyRs) are the major SR calcium-release channels required for excitation-contraction coupling in skeletal and cardiac muscle. Our objective was to evaluate SERCA2a (i.e., the SERCA cardiac isoform), PLN, SLN, and RyR2 (i.e., the RyR isoform enriched in the heart) gene expression in myocardial tissue of patients affected by tetralogy of Fallot (TOF), a conotruncal heart defect. The gene expression of target genes was assessed semiquantitatively by RT-PCR using the calsequestrin (CASQ, a housekeeping gene) RNA as internal standard in the atrial myocardium of 23 pediatric patients undergoing surgical correction of TOF, in 10 age-matched patients with ventricular septal defect (VSD) and in 13 age-matched children with atrial septal defect (ASD). We observed a significantly lower expression of PLN and SLN in TOF patients, while there was no difference between the expression of SERCA2a and RyR2 in TOF and VSD. These data suggest a complex mechanism aimed to enhance the intracellular Ca(2+) reserve in children affected by tetralogy of Fallot.  相似文献   
210.
Biofouling is one of the most serious problems facing numerous industrial processes. In the case of a heat exchanger unit, biological deposits adhering to the inside surface of its tubes reduce heat transfer and, thus, the thermal performance of the cycle. Control of this phenomenon is proving fundamental for both land and marine equipment to operate in optimum working conditions. Hence, it is necessary to apply antifouling methods capable of keeping surfaces free of any kind of biofouling. This paper reports on the behaviour resulting from use of the flow inversion method vs that obtained by using various chemical treatments. The study compares the effectiveness of certain chemical treatments (Na hypochlorite, peracetic acid and a compound formed by Na bromide + Na hypochlorite) for removing a biofouling film that has already formed on the inside surfaces of tubes in a heat exchanger pilot plant. The paper also addresses the issue of optimising the concentration of biocide dose as a function of the residual biocide in order minimise the environmental impact caused by effluent from industrial plants. The results indicate that it is possible to eliminate a biofilm formed on the inside surfaces of tubes by the use of intermittent doses of chemical treatments at low concentrations and over long application times. Furthermore, once the stabilisation phase is reached 6 d after starting the treatment, it is possible to maintain the conditions achieved using only 20% of the initial dosage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号