全文获取类型
收费全文 | 3324篇 |
免费 | 225篇 |
国内免费 | 1篇 |
专业分类
3550篇 |
出版年
2021年 | 27篇 |
2019年 | 22篇 |
2018年 | 29篇 |
2016年 | 51篇 |
2015年 | 71篇 |
2014年 | 83篇 |
2013年 | 145篇 |
2012年 | 167篇 |
2011年 | 157篇 |
2010年 | 97篇 |
2009年 | 86篇 |
2008年 | 172篇 |
2007年 | 151篇 |
2006年 | 151篇 |
2005年 | 127篇 |
2004年 | 129篇 |
2003年 | 137篇 |
2002年 | 130篇 |
2001年 | 32篇 |
2000年 | 27篇 |
1999年 | 35篇 |
1998年 | 38篇 |
1997年 | 39篇 |
1996年 | 34篇 |
1995年 | 54篇 |
1994年 | 31篇 |
1993年 | 45篇 |
1992年 | 22篇 |
1991年 | 20篇 |
1990年 | 24篇 |
1989年 | 24篇 |
1988年 | 21篇 |
1987年 | 23篇 |
1985年 | 16篇 |
1984年 | 30篇 |
1983年 | 26篇 |
1982年 | 21篇 |
1981年 | 38篇 |
1980年 | 22篇 |
1979年 | 23篇 |
1978年 | 41篇 |
1974年 | 15篇 |
1973年 | 27篇 |
1971年 | 15篇 |
1966年 | 22篇 |
1965年 | 18篇 |
1964年 | 19篇 |
1960年 | 16篇 |
1956年 | 24篇 |
1939年 | 18篇 |
排序方式: 共有3550条查询结果,搜索用时 15 毫秒
51.
Alfred Berteloot Christiane Malo Sylvie Breton Michel Brunette 《The Journal of membrane biology》1991,122(2):111-125
Summary Kinetic data in (brush-border) membrane vesicles which rely on the validity of the initial rate assumption for their interpretation and depend on tracer flux studies using the rapid filtration technique for their experimental measurement have been limited to some extent by the absence of techniques that would allow for real-time data analysis. In this paper, we report on our successful design of a fast sampling, rapid filtration apparatus (FSRFA) which seems to fill up this technical gap since showing the following characteristics: (i) rapid injection (5 msec) and mixing (less than 100 msec) of small amounts of vesicles (10–40 l) with an incubation medium (0.2–1.0 ml); (ii) fast (20 to 80 msec depending on the sample volume) and multiple (up to 18 samples at a maximal rate of 4/sec) sampling of the uptake mixture followed by rapid quenching in the stop solution (approximately 5 msec) according to a predetermined time schedule (any time combination from 0.25 to 9999 sec); and (iii) fast, automated, and sampling-synchronized filtration and washings of the quenched uptake medium (only 15–20 sec are necessary for the first filtration followed by two washings and extra filtrations). As demonstrated using adult human jejunal brush-border membrane vesicles and Na+-d-glucose cotransport as models, the FSRFA accurately reproduces the manual aspects of the rapid filtration technique while allowing for very precise initial rate determinations. Moreover, the FSRFA has also been designed to provide as much versatility as possible and, in its present version, allows for a very precise control of the incubation temperature and also permits a few efflux protocols to be performed. Finally, its modular design, which separates the fast sampling unit from the rapid filtration device, should help in extending its use to fields other than transport measurement. 相似文献
52.
Family-group names in Coleoptera (Insecta) 总被引:1,自引:0,他引:1
Bouchard P Bousquet Y Davies AE Alonso-Zarazaga MA Lawrence JF Lyal CH Newton AF Reid CA Schmitt M Slipiński SA Smith AB 《ZooKeys》2011,(88):1-972
We synthesize data on all known extant and fossil Coleoptera family-group names for the first time. A catalogue of 4887 family-group names (124 fossil, 4763 extant) based on 4707 distinct genera in Coleoptera is given. A total of 4492 names are available, 183 of which are permanently invalid because they are based on a preoccupied or a suppressed type genus. Names are listed in a classification framework. We recognize as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes. For each name, the original spelling, author, year of publication, page number, correct stem and type genus are included. The original spelling and availability of each name were checked from primary literature. A list of necessary changes due to Priority and Homonymy problems, and actions taken, is given. Current usage of names was conserved, whenever possible, to promote stability of the classification.New synonymies (family-group names followed by genus-group names): Agronomina Gistel, 1848 syn. nov. of Amarina Zimmermann, 1832 (Carabidae), Hylepnigalioini Gistel, 1856 syn. nov. of Melandryini Leach, 1815 (Melandryidae), Polycystophoridae Gistel, 1856 syn. nov. of Malachiinae Fleming, 1821 (Melyridae), Sclerasteinae Gistel, 1856 syn. nov. of Ptilininae Shuckard, 1839 (Ptinidae), Phloeonomini Ádám, 2001 syn. nov. of Omaliini MacLeay, 1825 (Staphylinidae), Sepedophilini Ádám, 2001 syn. nov. of Tachyporini MacLeay, 1825 (Staphylinidae), Phibalini Gistel, 1856 syn. nov. of Cteniopodini Solier, 1835 (Tenebrionidae); Agronoma Gistel 1848 (type species Carabus familiaris Duftschmid, 1812, designated herein) syn. nov. of Amara Bonelli, 1810 (Carabidae), Hylepnigalio Gistel, 1856 (type species Chrysomela caraboides Linnaeus, 1760, by monotypy) syn. nov. of Melandrya Fabricius, 1801 (Melandryidae), Polycystophorus Gistel, 1856 (type species Cantharis aeneus Linnaeus, 1758, designated herein) syn. nov. of Malachius Fabricius, 1775 (Melyridae), Sclerastes Gistel, 1856 (type species Ptilinus costatus Gyllenhal, 1827, designated herein) syn. nov. of Ptilinus Geoffroy, 1762 (Ptinidae), Paniscus Gistel, 1848 (type species Scarabaeus fasciatus Linnaeus, 1758, designated herein) syn. nov. of Trichius Fabricius, 1775 (Scarabaeidae), Phibalus Gistel, 1856 (type species Chrysomela pubescens Linnaeus, 1758, by monotypy) syn. nov. of Omophlus Dejean, 1834 (Tenebrionidae). The following new replacement name is proposed: Gompeliina Bouchard, 2011 nom. nov. for Olotelina Báguena Corella, 1948 (Aderidae).Reversal of Precedence (Article 23.9) is used to conserve usage of the following names (family-group names followed by genus-group names): Perigonini Horn, 1881 nom. protectum over Trechicini Bates, 1873 nom. oblitum (Carabidae), Anisodactylina Lacordaire, 1854 nom. protectum over Eurytrichina LeConte, 1848 nom. oblitum (Carabidae), Smicronychini Seidlitz, 1891 nom. protectum over Desmorini LeConte, 1876 nom. oblitum (Curculionidae), Bagoinae Thomson, 1859 nom. protectum over Lyprinae Gistel 1848 nom. oblitum (Curculionidae), Aterpina Lacordaire, 1863 nom. protectum over Heliomenina Gistel, 1848 nom. oblitum (Curculionidae), Naupactini Gistel, 1848 nom. protectum over Iphiini Schönherr, 1823 nom. oblitum (Curculionidae), Cleonini Schönherr, 1826 nom. protectum over Geomorini Schönherr, 1823 nom. oblitum (Curculionidae), Magdalidini Pascoe, 1870 nom. protectum over Scardamyctini Gistel, 1848 nom. oblitum (Curculionidae), Agrypninae/-ini Candèze, 1857 nom. protecta over Adelocerinae/-ini Gistel, 1848 nom. oblita and Pangaurinae/-ini Gistel, 1856 nom. oblita (Elateridae), Prosternini Gistel, 1856 nom. protectum over Diacanthini Gistel, 1848 nom. oblitum (Elateridae), Calopodinae Costa, 1852 nom. protectum over Sparedrinae Gistel, 1848 nom. oblitum (Oedemeridae), Adesmiini Lacordaire, 1859 nom. protectum over Macropodini Agassiz, 1846 nom. oblitum (Tenebrionidae), Bolitophagini Kirby, 1837 nom. protectum over Eledonini Billberg, 1820 nom. oblitum (Tenebrionidae), Throscidae Laporte, 1840 nom. protectum over Stereolidae Rafinesque, 1815 nom. oblitum (Throscidae) and Lophocaterini Crowson, 1964 over Lycoptini Casey, 1890 nom. oblitum (Trogossitidae); Monotoma Herbst, 1799 nom. protectum over Monotoma Panzer, 1792 nom. oblitum (Monotomidae); Pediacus Shuckard, 1839 nom. protectum over Biophloeus Dejean, 1835 nom. oblitum (Cucujidae), Pachypus Dejean, 1821 nom. protectum over Pachypus Billberg, 1820 nom. oblitum (Scarabaeidae), Sparrmannia Laporte, 1840 nom. protectum over Leocaeta Dejean, 1833 nom. oblitum and Cephalotrichia Hope, 1837 nom. oblitum (Scarabaeidae). 相似文献
53.
We have recently discovered a new class of bacteriocin (class IId) which stimulates plant growth in a way similar to Nod factors. Nod factors have been shown to provoke aspects of plant disease resistance. We investigated the effects of bacteriocins [thuricin 17 (T17) and bacthuricin F4 (BF4)] on the activities of phenylalanine ammonia lyase (PAL), guaiacol peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and polyphenol oxidase (PPO). Bacteriocin solutions were fed into the cut stems of soybean (Glycine max L. Merr. cv. OAC Bayfield) seedlings at the first trifoliate stage. PAL activity in T17 treated leaves was the highest at 72 h after treatment and was 75.5% greater than the control at that time. At 72 h after treatment POD activities in T17 and BF4 treated leaves increased by 72.7 and 91.3%, respectively, as compared with the control treatment. APX activity was 52.3 and 49.6% respectively, greater than the control in T17 and BF4 treated leaves at 72 h after treatment. SOD activity in T17 treated leaves was the highest at 72 h after treatment and was 26.0% greater than the control at that time. SOD activity was 70.5 and 60.2% greater, respectively, than the control in T17 and BF4 treated leaves, at 72 h. Using PAGE we found that one APX isozyme (28 kDa isoform) showed the strongest induction in all bacteriocin treated leaves at 72 h. Activity of the seven SOD isozymes was increased by both bacteriocins, relative to the control treatment. The 33 kDa PPO isozyme was induced strongly by both bacteriocins, relative to the control treatment. These results indicate that class IId bacteriocins can act as an inducer of plant disease defense-related enzymes and may be acting through mechanisms similar to Nod factors. 相似文献
54.
SOCS-1 is a central mediator of steroid-increased thymocyte apoptosis and decreased survival following sepsis 总被引:1,自引:0,他引:1
Chung CS Chen Y Grutkoski PS Doughty L Ayala A 《Apoptosis : an international journal on programmed cell death》2007,12(7):1143-1153
Suppressor of Cytokine Signaling (SOCS) proteins are recently identified inhibitors/regulators of cytokine/growth factor signaling
pathways. We have previously shown that SOCS-3 is upregulated in mice after sepsis induced by cecal ligation and puncture;
however, the contribution of SOCS-1 to septic morbidity and mortality is unclear. In the present study, we characterized SOCS-1
expression in different tissues and delineated putative mechanisms effecting SOCS-1 expression in thymus from septic mice.
We observed no difference in SOCS-1 expression in blood, peritoneal leukocytes, lung, and spleen taken from sham or septic
animals at 24 h after surgery. In contrast, SOCS-1 expression in thymus declined significantly after sepsis and this down-regulation
of SOCS-1 was associated with increased thymocyte apoptosis as well as augmented Bax recruitment to the mitochondria. Administration
of RU-38486, a steroid receptor antagonist, reversed the above effects in the septic thymus. Furthermore, SOCS-1+/− mice showed
a significant higher mortality when compared to SOCS-1+/+ mice after sepsis. Together, these results show that sepsis increases
steroid-induced thymic lymphoid cell apoptosis, which is associated with reduced SOCS-1 expression and increased Bax translocation
to mitochondria. Survival data suggests that SOCS-1 protein may play an important role in sepsis. 相似文献
55.
Xiao-Sheng Jiang Peter S. Backlund Christopher A. Wassif Alfred L. Yergey Forbes D. Porter 《Molecular & cellular proteomics : MCP》2010,9(7):1461-1475
Smith-Lemli-Opitz syndrome (SLOS) and lathosterolosis are malformation syndromes with cognitive deficits caused by mutations of 7-dehydrocholesterol reductase (DHCR7) and lathosterol 5-desaturase (SC5D), respectively. DHCR7 encodes the last enzyme in the Kandutsch-Russel cholesterol biosynthetic pathway, and impaired DHCR7 activity leads to a deficiency of cholesterol and an accumulation of 7-dehydrocholesterol. SC5D catalyzes the synthesis of 7-dehydrocholesterol from lathosterol. Impaired SC5D activity leads to a similar deficiency of cholesterol but an accumulation of lathosterol. Although the genetic and biochemical causes underlying both syndromes are known, the pathophysiological processes leading to the developmental defects remain unclear. To study the pathophysiological mechanisms underlying SLOS and lathosterolosis neurological symptoms, we performed quantitative proteomics analysis of SLOS and lathosterolosis mouse brain tissue and identified multiple biological pathways affected in Dhcr7Δ3–5/Δ3–5 and Sc5d−/− E18.5 embryos. These include alterations in mevalonate metabolism, apoptosis, glycolysis, oxidative stress, protein biosynthesis, intracellular trafficking, and cytoskeleton. Comparison of proteome alterations in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− brain tissues helps elucidate whether perturbed protein expression was due to decreased cholesterol or a toxic effect of sterol precursors. Validation of the proteomics results confirmed increased expression of isoprenoid and cholesterol synthetic enzymes. This alteration of isoprenoid synthesis may underlie the altered posttranslational modification of Rab7, a small GTPase that is functionally dependent on prenylation with geranylgeranyl, that we identified and validated in this study. These data suggested that although cholesterol synthesis is impaired in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− embryonic brain tissues the synthesis of nonsterol isoprenoids may be increased and thus contribute to SLOS and lathosterolosis pathology. This proteomics study has provided insight into the pathophysiological mechanisms of SLOS and lathosterolosis, and understanding these pathophysiological changes will help guide clinical therapy for SLOS and lathosterolosis.Smith-Lemli-Opitz syndrome (SLOS1; Online Mendelian Inheritance in Man 270400) is a multiple malformation syndrome with cognitive and behavioral deficiencies due to an inborn error of cholesterol synthesis. Typical findings in SLOS include dysmorphic facial features, limb defects, genital anomalies, growth retardation, cognitive disabilities, behavioral problems, and autistic features (for a review, see Ref. 1). The incidence of SLOS has been estimated to be on the order of 1/20,000–1/70,000 (1). SLOS is an autosomal recessive disorder caused by mutation of the 7-dehydrocholesterol reductase gene (DHCR7) (2–4). DHCR7 catalyzes the final step in the Kandutsch-Russel cholesterol biosynthetic pathway. Impaired DHCR7 activity results in increased 7-dehydrocholesterol (7DHC) and decreased cholesterol levels (Fig. 1A). Lathosterolosis is a rare “SLOS-like” malformation syndrome due to mutations of lathosterol 5-desaturase (SC5D) (5–7). SC5D catalyzes the conversion of lathosterol to 7DHC. Thus, in lathosterolosis, like SLOS, there is a deficiency of cholesterol. However, the accumulating precursor sterol is lathosterol rather than 7DHC (Fig. 1A). Because of its rarity and the fact that all known cases of lathosterolosis were ascertained due to similarity with SLOS, the phenotypic spectrum of lathosterolosis has not been defined.Open in a separate windowFig. 1.Representative 2-DE maps of SLOS and lathosterolosis mouse brain proteins. A, SLOS and lathosterolosis are inborn errors of cholesterol synthesis. SLOS is caused by mutations in the DHCR7 gene. DHCR7 catalyzes the final step in cholesterol synthesis. Lathosterolosis is caused by mutations of the SC5D gene. Cholesterol levels are decreased in both SLOS and lathosterolosis, but the accumulating precursor sterol differs. In SLOS, 7DHC accumulates, whereas in lathosterolosis, the accumulating sterol is lathosterol. B, representative 2-DE maps of control (Dhcr7+/+ and Sc5d+/+), Dhcr7Δ3–5/Δ3–5, and Sc5d−/− mouse brain proteins. Eighty micrograms of the pooled protein sample from Dhcr7+/+, Dhcr7Δ3–5/Δ3–5, Sc5d+/+, and Sc5d−/− embryonic mouse brain tissues were separated on a pH 3–10 nonlinear IPG strip followed by electrophoretic separation on a 12% SDS-polyacrylamide gel. Acidic pH is to the left, and increased molecular mass is at the top. Compared with Dhcr7+/+ mouse brains, the protein spots with significantly decreased or increased expression in Dhcr7Δ3–5/Δ3–5 mouse brains are marked in Dhcr7+/+ and Dhcr7Δ3–5/Δ3–5 mouse brain 2-DE maps, respectively. Compared with Sc5d+/+ mouse brains, the protein spots with significantly decreased or increased expression in Sc5d−/− mouse brains are marked in Sc5d+/+ and Sc5d−/− mouse brain 2-DE maps, respectively. Supplemental Table 2 provides detailed information on the differentially expressed protein spots.Although the genetic and biochemical causes of SLOS are defined, the pathophysiological mechanisms contributing to specific malformations have not been delineated. The classic paradigm for the pathogenesis of an inborn error of metabolism includes the accumulation of a toxic precursor and/or deficiency of an essential product. In the case of SLOS, the observed defects are postulated to be caused, either singly or in combination, by cholesterol deficiency or the accumulation of 7DHC (8, 9).Cholesterol is an essential lipid with multiple critical functions. In addition to being a structural lipid in membranes and myelin, cholesterol is the precursor for bile acid, steroid hormone, neuroactive steroid, and oxysterol synthesis. In cellular membranes, cholesterol rafts are microdomains that function in receptor-mediated signal transduction. Functional defects in IgE receptor-mediated mast cell degranulation and cytokine production (10), N-methyl-d-aspartate receptor function (11), and serotonin 1A receptor ligand binding (12, 13) have been reported in SLOS. The altered sterol composition in SLOS affects the physiochemical properties and function of lipid rafts. Membrane domains incorporating 7DHC differ from those containing only cholesterol in protein composition (14), packing (15), and stability (16–18). Substitution of 7DHC for cholesterol also decreases membrane bending rigidity (19). In addition, model membranes mimicking SLOS membranes have been reported to exhibit atypical membrane organization (20) and curvature (19). These alterations may have functional consequences. Depletion of cholesterol from hippocampal membranes and replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin 1A receptor despite the recovery of the overall membrane order (12). Cholesterol is also necessary for maturation and function of the hedgehog family of morphogens during embryonic development, and several mechanisms by which sonic hedgehog signaling might be impaired in SLOS have been proposed (21–23).To understand the pathophysiological processes underlying cognitive defects found in SLOS, we need to consider the potential detrimental effects of decreased cholesterol/functional sterol levels versus the potential toxic effects of increased 7DHC. To give insight into pathological effects due to cholesterol deficiency and precursor accumulation, we have produced mouse models deficient in either 7-dehydrocholesterol reductase (11) or lathosterol reductase (6) activity (Dhcr7Δ3–5/Δ3–5 and Sc5d−/−, respectively). Although the two models are similar in many respects, significant differences exist. Dhcr7 pups have relatively few physical malformations other than a low frequency of cleft palate but die during the 1st day of life due to failure to feed (11). In contrast Sc5d mutant embryos are stillborn and have multiple developmental malformations (6). In addition, although secretory granule formation is altered in both models, consistent with differing physiochemical properties of the two precursor sterols, the specific changes differ between the two models (19). For these reasons, a comparison of the two models will provide insight into common mechanisms that are likely due to cholesterol/sterol deficiency and syndrome-specific mechanisms that are due to specific effects of one of the two precursors.We now report the use of two-dimensional electrophoresis (2-DE) mass spectrometry proteomics analysis to identify proteins with altered expression in brain tissue from both Dhcr7 and Sc5d mutants with the goal of identifying novel pathophysiological mechanisms contributing to the neurological deficits in these two inborn errors of cholesterol synthesis. Because our focus was on identifying processes that could contribute to abnormal neurological development, our analysis was focused on brain tissue from E18.5 embryos. This embryonic age was selected because the biochemical defect increases with embryonic age (6, 11), and it is the latest time point for which we could obtain viable tissue for both mutants. Western blot analysis was used to validate selected individual proteins and pathways. Functional annotation suggested that alterations in mevalonate metabolism, glycolysis, oxidative stress, apoptosis, protein biosynthesis, intracellular trafficking, and cytoskeleton may contribute to the pathology of inborn errors of cholesterol synthesis. In addition, our data are consistent with the hypothesis that both cholesterol deficiency and increased precursor sterol levels contribute to SLOS and lathosterolosis pathology. 相似文献
56.
Lei Chen Peter Alfred Pröschel Thomas Riccardo Morneburg 《Journal of electromyography and kinesiology》2010,20(5):961-966
Ratios of muscle activities in unilateral isometric biting are assumed to provide information on strategies of muscle activation independently from bite force. If valid, this assumption would facilitate experiments as it would justify subject-control instead of transducer-based force control in biting studies. As force independence of ratios is controversial, we tested whether activity ratios are associated with bite force and whether this could affect findings based on subject-controlled force. In 52 subjects, bite force and bilateral masseter and temporalis electromyograms were recorded during unilateral biting on a transducer with varying force levels and with uniform subject-controlled force. Working/balancing and temporalis/masseter ratios of activity peaks were related to bite force peaks. Activity ratios were significantly but weakly correlated with the bite force. The subject-controlled force varied within ±25% around the prescribed force in 95% of all bites. This scatter could cause a variation of group mean activity ratios of at most ±6% because of the weak correlation between bite force and ratios. As this small variation is negligible in most cases, subject-control of bite force can be considered an appropriate method to obtain group means of relative muscle activation in particular when force control with transducers is not feasible. 相似文献
57.
Synonymous codon usage is a commonly used means for estimating gene expression levels of Escherichia coli genes and has also been used for predicting highly expressed genes for a number of prokaryotic genomes. By comparison of expression level-dependent features in codon usage with protein abundance data from two proteome studies of exponentially growing E. coli and Bacillus subtilis cells, we try to evaluate whether the implicit assumption of this approach can be confirmed with experimental data. Log-odds ratio scores are used to model differences in codon usage between highly expressed genes and genomic average. Using these, the strength and significance of expression level-dependent features in codon usage were determined for the genes of the Escherichia coli, Bacillus subtilis and Haemophilus influenzae genomes. The comparison of codon usage features with protein abundance data confirmed a relationship between these to be present, although exceptions to this, possibly related to functional context, were found. For species with expression level-dependent features in their codon usage, the applied methodology could be used to improve in silico simulations of the outcome of two-dimensional gel electrophoretic experiments. 相似文献
58.
Dongxiao Zhu Alfred O Hero Zhaohui S Qin Anand Swaroop 《Journal of computational biology》2005,12(7):1029-1045
Many exploratory microarray data analysis tools such as gene clustering and relevance networks rely on detecting pairwise gene co-expression. Traditional screening of pairwise co-expression either controls biological significance or statistical significance, but not both. The former approach does not provide stochastic error control, and the later approach screens many co-expressions with excessively low correlation. We have designed and implemented a statistically sound two-stage co-expression detection algorithm that controls both statistical significance (false discovery rate, FDR) and biological significance (minimum acceptable strength, MAS) of the discovered co-expressions. Based on estimation of pairwise gene correlation, the algorithm provides an initial co-expression discovery that controls only FDR, which is then followed by a second stage co-expression discovery which controls both FDR and MAS. It also computes and thresholds the set of FDR p-values for each correlation that satisfied the MAS criterion. Using simulated data, we validated asymptotic null distributions of the Pearson and Kendall correlation coefficients and the two-stage error-control procedure; we also compared our two-stage test procedure with another two-stage test procedure using the receiver operating characteristic (ROC) curve. We then used yeast galactose metabolism data to illustrate the advantage of our method for clustering genes and constructing a relevance network. The method has been implemented in an R package "GeneNT" that is freely available from the Comprehensive R Archive Network (CRAN): www.cran.r-project.org/. 相似文献
59.
60.
Behrens S Lösekann T Pett-Ridge J Weber PK Ng WO Stevenson BS Hutcheon ID Relman DA Spormann AM 《Applied and environmental microbiology》2008,74(10):3143-3150
To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with (13)C-carbon and (15)N-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities. 相似文献