首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2117篇
  免费   128篇
  国内免费   2篇
  2023年   10篇
  2022年   18篇
  2021年   55篇
  2020年   21篇
  2019年   32篇
  2018年   39篇
  2017年   43篇
  2016年   70篇
  2015年   91篇
  2014年   126篇
  2013年   135篇
  2012年   186篇
  2011年   154篇
  2010年   127篇
  2009年   118篇
  2008年   130篇
  2007年   120篇
  2006年   102篇
  2005年   100篇
  2004年   104篇
  2003年   102篇
  2002年   76篇
  2001年   30篇
  2000年   17篇
  1999年   16篇
  1998年   21篇
  1997年   18篇
  1996年   16篇
  1995年   17篇
  1994年   11篇
  1993年   11篇
  1992年   7篇
  1991年   6篇
  1990年   8篇
  1989年   8篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   11篇
  1983年   6篇
  1982年   4篇
  1980年   5篇
  1977年   2篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1968年   2篇
  1948年   3篇
  1947年   2篇
排序方式: 共有2247条查询结果,搜索用时 442 毫秒
971.
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source–sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.  相似文献   
972.
The interplay among histone modifications modulates the expression of master regulatory genes in development. Chromatin effector proteins bind histone modifications and translate the epigenetic status into gene expression patterns that control development. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific proteins with a plant homeodomain (PHD) motif, SHORT LIFE (SHL) and EARLY BOLTING IN SHORT DAYS (EBS), function in the chromatin-mediated repression of floral initiation and play independent roles in the control of genes regulating flowering. Previous results showed that repression of the floral integrator FLOWERING LOCUS T (FT) requires EBS. We establish that SHL is necessary to negatively regulate the expression of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), another floral integrator. SHL and EBS recognize di- and trimethylated histone H3 at lysine 4 and bind regulatory regions of SOC1 and FT, respectively. These PHD proteins maintain an inactive chromatin conformation in SOC1 and FT by preventing high levels of H3 acetylation, bind HISTONE DEACETYLASE6, and play a central role in regulating flowering time. SHL and EBS are widely conserved in plants but are absent in other eukaryotes, suggesting that the regulatory module mediated by these proteins could represent a distinct mechanism for gene expression control in plants.  相似文献   
973.
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the “Membrane Sensor Hypothesis” which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   
974.
Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore domain into the bacterial outer membrane follows the rules of β-barrel transmembrane protein biogenesis and is dependent on the essential Bam complex. We have recently described the full fiber structure of SadA, a TAA of unknown function in Salmonella and other enterobacteria. In this work, we describe the structure and function of SadB, a small inner membrane lipoprotein. The sadB gene is located in an operon with sadA; orthologous operons are only found in enterobacteria, whereas other TAAs are not typically associated with lipoproteins. Strikingly, SadB is also a trimer, and its co-expression with SadA has a direct influence on SadA structural integrity. This is the first report of a specific export factor of a TAA, suggesting that at least in some cases TAA autotransport is assisted by additional periplasmic proteins.  相似文献   
975.
Thermal stress affects organism performance differently depending on the ambient temperature to which they are acclimatized, which varies along latitudinal gradients. This study investigated whether differences in physiological responses to temperature are consistent with regional differences in temperature regimes for the stony coral Oculina patagonica. To resolve this question, we experimentally assessed how colonies originating from four different locations characterized by >3 °C variation in mean maximum annual temperature responded to warming from 20 to 32 °C. We assessed plasticity in symbiont identity, density, and photosynthetic properties, together with changes in host tissue biomass. Results show that, without changes in the type of symbiont hosted by coral colonies, O. patagonica has limited capacity to acclimatize to future warming. We found little evidence of variation in overall thermal tolerance, or in thermal optima, in response to spatial variation in ambient temperature. Given that the invader O. patagonica is a relatively new member of the Mediterranean coral fauna, our results also suggest that coral populations may need to remain isolated for a long period of time for thermal adaptation to potentially take place. Our study indicates that for O. patagonica, mortality associated with thermal stress manifests primarily through tissue breakdown under moderate but prolonged warming (which does not impair symbiont photosynthesis and, therefore, does not lead to bleaching). Consequently, projected global warming is likely to cause repeat incidents of partial and whole colony mortality and might drive a gradual range contraction of Mediterranean corals.  相似文献   
976.
Soil bacteria typically coexist with close relatives generating widespread phylogenetic clustering. This has been ascribed to the abiotic filtering of organisms with shared ecological tolerances. Recent theoretical developments suggest that competition can also explain the phylogenetic similarity of coexisting organisms by excluding large low‐competitive clades. We propose that combining the environmental patterns of traits associated with abiotic stress tolerances or competitive abilities with phylogeny and abundance data, can help discern between abiotic and biotic mechanisms underlying the coexistence of phylogenetically related bacteria. We applied this framework in a model system composed of interspersed habitats of highly contrasted productivity and comparatively dominated by biotic and abiotic processes, i.e. the plant patch‐gap mosaic typical of drylands. We examined the distribution of 15 traits and 3290 bacterial taxa in 28 plots. Communities showed a marked functional response to the environment. Conserved traits related to environmental stress tolerance (e.g. desiccation, formation of resistant structures) were differentially selected in either habitat, while competition related traits (e.g. organic C consumption, formation of nutrient‐scavenging structures) prevailed under high resource availability. Phylogenetic clustering was stronger in habitats dominated by biotic filtering, suggesting that competitive exclusion of large clades might underlie the ecological similarity of co‐occurring soil bacteria.  相似文献   
977.
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+, where Arm=2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA2-) and (2-phosphonoethoxy)ethane (PEE2-), also known as [2-(2-ethoxy)ethyl]phosphonate, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I=0.1 M, NaNO3). The ternary Cu(Arm)(PEEA) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO3) species, where R-PO3(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes. The increased stability is attributed to intramolecular stack formation in the Cu(Arm)(PEEA) complexes and also, to a smaller extent, to the formation of 6-membered chelates involving the ether oxygen atom present in the -CH2-O-CH2-CH2-PO3(2-) residue of PEEA2-. This latter interaction is separately quantified by studying the ternary Cu(Arm)(PEE) complexes which can form the 6-membered chelates but where no intramolecular ligand-ligand stacking is possible. Application of these results allows a quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PEEA) species; e.g., of the Cu(Bpy)(PEEA) system about 11% exist with the metal ion solely coordinated to the phosphonate group, 4% as a 6-membered chelate involving the ether oxygen atom of the -CH2-O-CH2CH2-PO3(2-) residue, and 85% with an intramolecular stack between the adenine moiety of PEEA2- and the aromatic rings of Bpy. In addition, the Cu(Arm)(PEEA) complexes may be protonated, leading to Cu(Arm)(H;PEEA)+ species for which it is concluded that the proton is located at the phosphonate group and that the complexes are mainly formed (50 and 70%) by a stacking adduct between Cu(Arm)2+ and the adenine residue of H(PEEA)-. Finally, the stacking properties of adenosine 5'-monophosphate (AMP2-), of the dianion of 9-[2-(phophonomethoxy)ethyl]adenine (PMEA2-) and of several of its analogues (=PA2-) are compared in their ternary Cu(Arm)(AMP) and Cu(Arm)(PA) systems. Conclusions regarding the antiviral properties of several acyclic nucleoside phosphonates are shortly discussed.  相似文献   
978.
Thrombospondin modules and angiogenesis   总被引:7,自引:0,他引:7  
Angiogenesis is a complex, multifactorial process that involves signals from endothelial cells and from the stoma. Extracellular matrix proteins participate in the modulation of growth factor response, contribute to the architecture of the vasculature and provide signals for the stabilization of mature capillary beds. The identification of the relevant extracellular matrix molecules and the characterization of their effects has been a central focus of research in vascular biology. Thrombospondin-1 is an extracellular glycoprotein first to be recognized as an inhibitor of angiogenesis more than a decade ago. Since then, much has been learned about its ability to regulate vascular growth in several angiogenesis models, functional domains have been identified, and mechanisms of action determined. This review summarizes current understanding on the effects of thrombospondin-1 and -2 during the process of angiogenesis. We will also extend our comments to ADAMTS1, a member of a relatively novel group of matrix metalloproteinases with thrombospondin repeats and shown to affect endothelial cell function and angiogenesis.  相似文献   
979.
Dynamic analysis of actin cable function during Drosophila dorsal closure   总被引:1,自引:0,他引:1  
Throughout development, a series of epithelial movements and fusions occur that collectively shape the embryo. They are dependent on coordinated reorganizations and contractions of the actin cytoskeleton within defined populations of epithelial cells. One paradigm morphogenetic movement, dorsal closure in the Drosophila embryo, involves closure of a dorsal epithelial hole by sweeping of epithelium from the two sides of the embryo over the exposed extraembryonic amnioserosa to form a seam where the two epithelial edges fuse together. The front row cells exhibit a thick actin cable at their leading edge. Here, we test the function of this cable by live analysis of GFP-actin-expressing embryos in which the cable is disrupted by modulating Rho1 signaling or by loss of non-muscle myosin (Zipper) function. We show that the cable serves a dual role during dorsal closure. It is contractile and thus can operate as a "purse string," but it also restricts forward movement of the leading edge and excess activity of filopodia/lamellipodia. Stripes of epithelium in which cable assembly is disrupted gain a migrational advantage over their wild-type neighbors, suggesting that the cable acts to restrain front row cells, thus maintaining a taut, free edge for efficient zippering together of the epithelial sheets.  相似文献   
980.
A novel domain (the BRICHOS domain) of approximately 100 amino acids has been identified in several previously unrelated proteins that are linked to major diseases. These include BRI(2), which is related to familial British and Danish dementia (FBD and FDD); Chondromodulin-I (ChM-I), related to chondrosarcoma; CA11, related to stomach cancer; and surfactant protein C (SP-C), related to respiratory distress syndrome (RDS). In several of these, the conserved BRICHOS domain is located in the propeptide region that is removed after proteolytic processing. Experimental data suggest that the role of this domain could be related to the complex post-translational processing of these proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号