首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   65篇
  2023年   9篇
  2022年   4篇
  2021年   13篇
  2020年   7篇
  2019年   11篇
  2018年   13篇
  2017年   11篇
  2016年   18篇
  2015年   34篇
  2014年   22篇
  2013年   51篇
  2012年   50篇
  2011年   42篇
  2010年   35篇
  2009年   37篇
  2008年   32篇
  2007年   39篇
  2006年   27篇
  2005年   37篇
  2004年   39篇
  2003年   28篇
  2002年   22篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   12篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   13篇
  1993年   9篇
  1992年   10篇
  1991年   4篇
  1990年   12篇
  1989年   2篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1979年   2篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1938年   3篇
  1937年   2篇
  1932年   1篇
  1927年   1篇
排序方式: 共有732条查询结果,搜索用时 15 毫秒
31.
We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age) in pots associated with four maize cultivars, including two genetically modified (GM) cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA). The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most “active” fungi (as recovered via RNA). Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production). Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.  相似文献   
32.
33.
Many questions regarding proteins involved in microbial sulfur metabolism remain unsolved. For sulfur respiration at low pH, the terminal electron acceptor is still unclear. Desulfurella amilsii is a sulfur-reducing bacterium that respires elemental sulfur (S0) or thiosulfate, and grows by S0 disproportionation. Due to its versatility, comparative studies on D. amilsii may shed light on microbial sulfur metabolism. Requirement of physical contact between cells and S0 was analyzed. Sulfide production decreased by around 50% when S0 was trapped in dialysis membranes, suggesting that contact between cells and S0 is beneficial, but not strictly needed. Proteome analysis was performed under the aforementioned conditions. A Mo-oxidoreductase suggested from genome analysis to act as sulfur reductase was not detected in any growth condition. Thiosulfate and sulfite reductases showed increased abundance in thiosulfate-reducing cultures, while rhodanese-like sulfurtransferases were highly abundant in all conditions. DsrE and DsrL were abundantly detected during thiosulfate reduction, suggesting a modified mechanism of sulfite reduction. Proteogenomics suggest a different disproportionation pathway from what has been reported. This work points to an important role of rhodaneses in sulfur processes and these proteins should be considered in searches for sulfur metabolism in broader fields like meta-omics.  相似文献   
34.
35.
The feasibility of anaerobic methanethiol (MT) degradation at elevated sodium concentrations was investigated in a mesophilic (30 degrees C) lab-scale upflow anaerobic sludge bed (UASB) reactor, inoculated with estuarine sediment originating from the Wadden Sea (The Netherlands). MT was almost completely degraded (>95%) to sulfide, methane and carbon dioxide at volumetric loading rates up to 37 mmol MT x L(-1) x day(-1), 0.5 M sodium (NaCl or NaHCO(3)) and between pH 7.3 and 8.4. Batch experiments revealed that inhibition of MT degradation started at sodium (both NaCl and NaHCO(3)) concentrations exceeding 0.8 M. Sulfide inhibited MT degradation already around 3 mM (pH 8.3).  相似文献   
36.
Prasinophytes (Chlorophyta) are a diverse, paraphyletic group of planktonic microalgae for which benthic species are largely unknown. Here, we report a sand‐dwelling, marine prasinophyte with several novel features observed in clonal cultures established from numerous locations around Australia. The new genus and species, which we name Microrhizoidea pickettheapsiorum (Mamiellophyceae), alternates between a benthic palmelloid colony, where cell division occurs, and a planktonic flagellate. Flagellates are short lived, settle and quickly resorb their flagella, the basal bodies then nucleate novel tubular appendages, termed “microrhizoids”, that lack an axoneme and function to anchor benthic cells to the substratum. To our knowledge, microrhizoids have not been observed in any other green alga or protist, are slightly smaller in diameter than flagella, generally contain nine microtubules, are long (3–5 times the length of flagella) and are not encased in scales. Following settlement, cell divisions result in a loose, palmelloid colony, each cell connected to the substratum by two microrhizoids. Flagellates are round to bean‐shaped with two long, slightly uneven flagella. Both benthic cells and flagellates, along with their flagella, are encased in thin scales. Phylogenies based on the complete chloroplast genome of Microrhizoidea show that it is clearly a member of the Mamiellophyceae, most closely related to Dolichomastix tenuilepsis. More taxon‐rich phylogenetic analyses of the 18S rRNA gene, including metabarcodes from the Tara Oceans and Ocean Sampling Day projects, confidently show the distinctive nature of Microrhizoidea, and that the described biodiversity of the Mamiellophyceae is a fraction of its real biodiversity. The discovery of a largely benthic prasinophyte changes our perspective on this group of algae and, along with the observation of other potential benthic lineages in environmental sequences, illustrates that benthic habitats can be a rich ground for algal biodiscovery.  相似文献   
37.
38.
Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4 +, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.  相似文献   
39.
1H Nuclear magnetic resonance spectrometry and multivariate analysis techniques were applied for the metabolic profiling of three Strychnos species: Strychnos nux-vomica (seeds, stem bark, root bark), Strychnos ignatii (seeds), and Strychnos icaja (leaves, stem bark, root bark, collar bark). The principal component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between all samples, using the three first components. The key compounds responsible for the discrimination were brucine, loganin, fatty acids, and Strychnos icaja alkaloids such as icajine and sungucine. The method was then applied to the classification of several "false angostura" samples. These samples were, as expected, identified as S. nux-vomica by PCA, but could not be clearly discriminated as root bark or stem bark samples after further statistical analysis.  相似文献   
40.
A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the (1)H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号