首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   58篇
  2022年   7篇
  2021年   21篇
  2020年   13篇
  2019年   20篇
  2018年   16篇
  2017年   17篇
  2016年   20篇
  2015年   34篇
  2014年   45篇
  2013年   46篇
  2012年   66篇
  2011年   71篇
  2010年   38篇
  2009年   25篇
  2008年   51篇
  2007年   55篇
  2006年   38篇
  2005年   29篇
  2004年   45篇
  2003年   25篇
  2002年   28篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1988年   4篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   11篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1972年   2篇
  1969年   3篇
  1960年   3篇
  1941年   1篇
  1931年   1篇
排序方式: 共有874条查询结果,搜索用时 31 毫秒
31.
In anoxic environments, methane oxidation is conducted in a syntrophic process between methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). Microbial mats consisting of ANME, SRB and other microorganisms form methane seep-related carbonate buildups in the anoxic bottom waters of the Black Sea Crimean shelf. To shed light on the localization of the biochemical processes at the level of single cells in the Black Sea microbial mats, we applied antibody-based markers for key enzymes of the relevant metabolic pathways. The dissimilatory adenosine-5′-phosphosulfate (APS) reductase, methyl-coenzyme M reductase (MCR) and methanol dehydrogenase (MDH) were selected to localize sulfate respiration, reverse methanogenesis and aerobic methane oxidation, respectively. The key enzymes could be localized by double immunofluorescence and immunocytochemistry at light- and electron microscopic levels. In this study we show that sulfate reduction is conducted synchronized and in direct proximity to reverse methanogenesis of ANME archaea. Microcolonies in interspaces between ANME/SRB express methanol dehydrogenase, which is indicative for oxidation of C1 compounds by methylotrophic or methanotrophic bacteria. Thus, in addition to syntrophic AOM, oxygen-dependent processes are also conducted by a small proportion of the microbial population.  相似文献   
32.
One of the emerging biopolymers that are currently under active investigation is bacterial poly(γ‐glutamic acid) (γ‐PGA). However, before its full industrial exploitation, a substantial increase in microbial productivity is required. γ‐PGA obtained from the Bacillus subtilis laboratory strain 168 offers the advantage of a producer characterized by a well defined genetic framework and simple manipulation techniques. In this strain, the knockout of genes for the major γ‐PGA degrading enzymes, pgdS and ggt, leads to a considerable improvement in polymer yield, which attains levels analogous to the top wild γ‐PGA producer strains. This study highlights the convenience of using the laboratory strain of B. subtilis over wild isolates in designing strain improvement strategies aimed at increasing γ‐PGA productivity. Biotechnol. Bioeng. 2013; 110: 2006–2012. © 2013 Wiley Periodicals, Inc.  相似文献   
33.
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb''s law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.  相似文献   
34.
In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics.  相似文献   
35.
It is now commonly accepted that the intestinal microbiota plays a crucial role in the gut physiology and homeostasis, and that both qualitative and quantitative alterations in the compositions of the gut flora exert profound effects on the host’s intestinal cells. In spite of this, the details of the interaction between commensal bacteria and intestinal cells are still largely unknown and only in few cases the molecular mechanisms have been elucidated. Here we analyze the effects of molecules produced and secreted by Lactobacillus gasseri SF1183 on human intestinal HCT116 cells. L. gasseri is a well known species of lactic acid bacteria, commonly associated to the human intestine and SF1183 is a human strain previously isolated from an ileal biopsy of an healthy volunteer. SF1183 produces and secretes, in a growth phase-dependent way, molecule(s) able to drastically interfere with HCT116 cell proliferation. Although several attempts to purify and identify the bioactive molecule(s) have been so far unsuccessful, a partial characterization has indicated that it is smaller than 3 kDa, thermostable and of proteinaceous nature. L. gasseri molecule(s) stimulate a G1-phase arrest of the cell cycle by up-regulation of p21WAF1 rendering cells protected from intrinsic and extrinsic apoptosis. A L. gasseri-mediated reduction of apoptosis and of cell proliferation could be relevant in protecting epithelial barrier integrity and helping in reconstituting tissutal homeostasis.  相似文献   
36.
37.
Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.Ebola virus (EBOV) is one of the most deadly human pathogens, causing a severe hemorrhagic fever syndrome in both humans and non-human primates with fatality rates ranging from 50 to 70%.1 The recent outbreak of Ebola Virus Diseases (EVD) in West Africa highlights the pathogenic nature of this virus, the high mortality rates and pandemic potential. To date, there have been over 27 700 cases and >11 280 deaths.1, 2 Although EVD is usually an acute illness, increasing evidences exist of persistent infections and post infection syndromes,3, 4, 5, 6 highlighting the need to identify immune correlates of a protective immune response.Defining human immune responses to EBOV infection, pathogenesis and correlates of protection are important for designing effective therapeutic and vaccination interventions. A decrease in lymphocytes has been observed in studies in mice,7 non-human primates8 and humans,9 and is attributed to apoptotic mechanisms.7, 10 Persistent B and T-cell activation has been described in four survivors as long as one month after discharge from the hospital, suggesting recurrent antigenic stimulation.11 While aberrant immune responses have been described after EBOV infection (reviewed in12, 13), and different patterns of inflammatory mediators have been associated with different clinical outcomes,9, 10, 11, 14, 15, 16, 17 data on human immune responses to Ebola virus remain scanty, due to difficulties in obtaining sequential samples through the course of illness and to limitations imposed by biosafety requirements for laboratory analyses.We conducted a longitudinal study aimed to characterize the kinetics of T-cell phenotypes, activation/differentiation profile, autophagic/apoptotic markers and functionality in two EVD patients from soon after symptom onset through their hospitalization until recovery.  相似文献   
38.
The franciscana dolphin, Pontorporia blainvillei, is an endemic cetacean of the Atlantic coast of South America. Its coastal distribution and restricted movement patterns make this species vulnerable to anthropogenic factors, particularly to incidental bycatch. We used mitochondrial DNA control region sequences, 10 microsatellites, and sex data to investigate the population structure of the franciscana dolphin from a previously established management area, which includes the southern edge of its geographic range. F‐statistics and Bayesian cluster analyses revealed the existence of three genetically distinct populations. Based on the microsatellite loci, similar levels of genetic variability were found in the area; 13 private alleles were found in Monte Hermoso, but none in Claromecó. When considering the mitochondrial DNA control region sequences, lower levels of genetic diversity were found in Monte Hermoso, when compared to the other localities. Low levels of gene flow were found between most localities. Additionally, no evidence of isolation by distance nor sex‐biased dispersal was detected in the study area. In view of these results showing that populations from Necochea/Claromecó, Monte Hermoso, and Río Negro were found to be genetically distinct and the available genetic information for the species previously published, Argentina would comprise five distinct populations: Samborombón West/Samborombón South, Cabo San Antonio/Buenos Aires East, Necochea/Claromecó/Buenos Aires Southwest, Monte Hermoso, and Río Negro. In order to ensure the long‐term survival of the franciscana dolphin, management and conservation strategies should be developed considering each of these populations as different management units.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号