首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   7篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   7篇
  2017年   10篇
  2016年   7篇
  2015年   7篇
  2014年   12篇
  2013年   14篇
  2012年   13篇
  2011年   11篇
  2010年   10篇
  2009年   6篇
  2008年   7篇
  2007年   10篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2000年   1篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1969年   1篇
排序方式: 共有190条查询结果,搜索用时 14 毫秒
61.
62.
Central adiposity is a significant determinant of obesity-related hypertension risk, which may arise due to the pathogenic inflammatory nature of the abdominal fat depot. However, the influence of pro-inflammatory adipokines on blood pressure in the obese hypertensive phenotype has not been well established in Saudi subjects. As such, our study investigated whether inflammatory factors may represent useful biomarkers to delineate hypertension risk in a Saudi cohort with and without hypertension and/or diabetes mellitus type 2 (DMT2). Subjects were subdivided into four groups: healthy lean controls (age: 47.9±5.1 yr; BMI: 22.9±2.1 Kg/m2), non-hypertensive obese (age: 46.1±5.0 yr; BMI: 33.7±4.2 Kg/m2), hypertensive obese (age: 48.6±6.1 yr; BMI: 36.5±7.7 Kg/m2) and hypertensive obese with DMT2 (age: 50.8±6.0 yr; BMI: 35.3±6.7 Kg/m2). Anthropometric data were collected from all subjects and fasting blood samples were utilized for biochemical analysis. Serum angiotensin II (ANG II) levels were elevated in hypertensive obese (p<0.05) and hypertensive obese with DMT2 (p<0.001) compared with normotensive controls. Systolic blood pressure was positively associated with BMI (p<0.001), glucose (p<0.001), insulin (p<0.05), HOMA-IR (p<0.001), leptin (p<0.01), TNF-α (p<0.001) and ANG II (p<0.05). Associations between ANG II and TNF-α with systolic blood pressure remained significant after controlling for BMI. Additionally CRP (p<0.05), leptin (p<0.001) and leptin/adiponectin ratio (p<0.001) were also significantly associated with the hypertension phenotype. In conclusion our data suggests that circulating pro-inflammatory adipokines, particularly ANG II and, TNF-α, represent important factors associated with a hypertension phenotype and may directly contribute to predicting and exacerbating hypertension risk.  相似文献   
63.
Organochlorine pesticides are known to cause disturbances in many physiological functions. The effects of in vivo administered hexachlorobenzene (HCB) on the male testicular function were studied in Meriones unguiculatus. Three groups of sexually mature meriones were orally exposed to 1.6, 4, and 16 mg/kg of body weight in olive oil for 30 days. Morphological and morphometrical estimations were applied to quantify some structural constituents of the testes. Testicular weight was significantly decreased in all treated groups, while no change was noted in seminal vesicle weight. A decrease in the spermatozoid content of the seminiferous tube was noted and appeared correlated with a modification of the process of spermatogenesis. Spermatic activity in HCB-treated animals testes decreased significantly, particularly in the group treated with the higher dose (60+/-3.16% vs. 88+/-4.89% in controls). Plasma testosterone levels were decreased significantly in the groups treated with 4 and 16 mg[HCB]/kg BW (0.48+/-0.08 ng/ml and 0.54+/-0.07 ng/ml) comparatively to controls (1.08+/-0.1 ng/ml) p<0.01.  相似文献   
64.
Study of the influence of different concentrations of glucose, as carbon source, and magnesium, as chemical additive, on production by the Streptomyces sp. US80 strain of the three antifungal molecules (irumamycin, X-14952 B and 17-hydroxy-venturicidin A) showed that the highest antifungal activity was obtained at 5 g/L and 3.5 mM for glucose and magnesium, respectively. Environmental factors for maximum antifungal activity production are: temperature of growth 30 degrees C, pH 7, incubation time 72 h and agitation rate of 200 rpm. To further enhance the production of the three antifungal compounds, which possess a real potential application in the agriculture domain, and to explore the possibility of obtaining other active molecules from the Streptomyces sp. US80, we investigated the effect of the addition of heat-killed fungi to the culture media. Biochemical, microbiological and spectroscopic studies of the cultures of the Streptomyces sp. US80 strain in absence (control) and in presence of heat-killed fungus cells indicate an increase of 70% in the production of the three antifungal molecules, compared to the control culture.  相似文献   
65.
Ghrelin is a multifunctional regulatory peptide that has widespread endocrine and metabolic effects in mammals and birds. The present study aimed to investigate the possible effect of ghrelin on blood hormone and biochemical indices in turkey. A total of forty-eight 28 day-old turkeys were divided into three groups for tests. Ghrelin was injected at the onset of the experiment (28-day old birds). Treatment doses were as follows: treatment 1 (control) without injection; treatment 2—50 ng ghrelin/kg body weight (BW); and treatment 3—100 ng ghrelin/kg BW. Two blood samples were taken from the birds, one at 12 h (short-term effect) and the other at 40 days (long-term effect). Blood analyses showed that level of corticosterone increased in response to ghrelin treatments G50 and G100 in samples taken on days 28 and 68 (p?<?0.01). There was an increase in T4 concentration in the G50 and G100 groups in comparison with the control. Blood glucose increased in response to ghrelin administration, and total cholesterol and triglyceride concentrations decreased in the two samples in response to higher ghrelin dosage (p?<?0.01). In conclusion, the peripheral administration of ghrelin in turkeys may increase levels of serum corticosterone, glucose and T4. Therefore, total cholesterol and triglyceride may decrease in birds following ghrelin administration. Ghrelin may increase metabolic rate (due to increases in T4) and regulate lipogenesis in poultry species such as turkey.  相似文献   
66.
The nature of the chemical metal–metal bond in M2(CO)10 (M?=?Mn, Re, Tc) dinuclear decacarbonyls complexes was investigated for the first time using the natural orbital chemical valence (NOCV) approach combined with the extended transition state (ETS) for energy decomposition analysis (EDA). The optimized geometries carried out at different levels of theory BP86, BLYP, BLYPD and BP86D, showed that the latter method, i.e., BP86D, led to the best agreement with X-ray experimental measurements. The BP86D/TZP results revealed that the computed covalent contribution to the metal–metal bond are 60.5%, 54.1% and 52.0% for Mn–Mn, Re–Re and Tc–Tc, respectively. The computed total interaction energies resulting from attractive terms (ΔE orb and ΔE eles), correspond well to experimental predictions, based on bond lengths and energy interaction analysis for the studied complexes.  相似文献   
67.
We examined the effects of 2,4-epibrassinolide (EBR) application on photosynthesis, antioxidant enzyme activity, and Rubisco activase (RCA) gene expression in wheat (Triticum aestivum L.) seedlings under a combination of drought and heat stress. The net photosynthetic rates (Pn) of wheat seedlings decreased significantly, the photosynthetic capability was inhibited, and the activities of superoxide (SOD), peroxidase (POD), catalase (CAT), and RCA as well as the initial and total activity of Rubisco declined under the combined stress. These decreases and inhibitory effects were significantly ameliorated by exogenous EBR application. Three subunits (45–46, 41–42, and 38–39 kDa) of RCA were observed in wheat seedlings. The abundances of the 38–39 kDa and 41–42 kDa subunits were significantly lower in plants subjected to stressful conditions than in unstressed plants. Interestingly, a marked increase in 45–46 kDa RCA was observed under heat or heat combined with drought stress. The abundance of 38–39 kDa RCA in seedlings exposed to heat, drought, or their combination was significantly enhanced by EBR pretreatment, which paralleled the changes in initial Rubisco activity and Pn, but was not consistent with observed mRNA abundance. These results indicated that the larger subunit of RCA (45–46 kDa), which is more thermostable and increased in response to moderate heat stress, and the smaller isoform (38–39 kDa) of RCA may play important roles in maintaining the photosynthetic capability by EBR under stress conditions.  相似文献   
68.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   
69.

Background

The loss of vision has been associated with enhanced performance in non-visual tasks such as tactile discrimination and sound localization. Current evidence suggests that these functional gains are linked to the recruitment of the occipital visual cortex for non-visual processing, but the neurophysiological mechanisms underlying these crossmodal changes remain uncertain. One possible explanation is that visual deprivation is associated with an unmasking of non-visual input into visual cortex.

Methodology/Principal Findings

We investigated the effect of sudden, complete and prolonged visual deprivation (five days) in normally sighted adult individuals while they were immersed in an intensive tactile training program. Following the five-day period, blindfolded subjects performed better on a Braille character discrimination task. In the blindfold group, serial fMRI scans revealed an increase in BOLD signal within the occipital cortex in response to tactile stimulation after five days of complete visual deprivation. This increase in signal was no longer present 24 hours after blindfold removal. Finally, reversible disruption of occipital cortex function on the fifth day (by repetitive transcranial magnetic stimulation; rTMS) impaired Braille character recognition ability in the blindfold group but not in non-blindfolded controls. This disruptive effect was no longer evident once the blindfold had been removed for 24 hours.

Conclusions/Significance

Overall, our findings suggest that sudden and complete visual deprivation in normally sighted individuals can lead to profound, but rapidly reversible, neuroplastic changes by which the occipital cortex becomes engaged in processing of non-visual information. The speed and dynamic nature of the observed changes suggests that normally inhibited or masked functions in the sighted are revealed by visual loss. The unmasking of pre-existing connections and shifts in connectivity represent rapid, early plastic changes, which presumably can lead, if sustained and reinforced, to slower developing, but more permanent structural changes, such as the establishment of new neural connections in the blind.  相似文献   
70.
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号