首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1456篇
  免费   125篇
  国内免费   1篇
  1582篇
  2024年   2篇
  2023年   15篇
  2022年   35篇
  2021年   72篇
  2020年   35篇
  2019年   43篇
  2018年   61篇
  2017年   26篇
  2016年   64篇
  2015年   87篇
  2014年   115篇
  2013年   106篇
  2012年   118篇
  2011年   124篇
  2010年   81篇
  2009年   71篇
  2008年   79篇
  2007年   75篇
  2006年   73篇
  2005年   55篇
  2004年   51篇
  2003年   57篇
  2002年   42篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   9篇
  1992年   2篇
  1988年   3篇
  1983年   2篇
  1982年   4篇
  1979年   2篇
  1976年   2篇
  1972年   2篇
  1967年   2篇
  1965年   1篇
  1962年   1篇
  1961年   1篇
  1946年   1篇
  1943年   2篇
  1926年   1篇
  1924年   1篇
  1923年   1篇
  1909年   1篇
  1902年   2篇
  1862年   1篇
排序方式: 共有1582条查询结果,搜索用时 6 毫秒
11.
Idiopathic multicentric Castleman disease (iMCD) is a rare and life‐threatening haematologic disorder involving polyclonal lymphoproliferation and organ dysfunction due to excessive cytokine production, including interleukin‐6 (IL‐6). Clinical trial and real‐world data demonstrate that IL‐6 inhibition is effective in 34–50% of patients. mTOR, which functions through mTORC1 and mTORC2, is a recently discovered therapeutic target. The mTOR inhibitor sirolimus, which preferentially inhibits mTORC1, has led to sustained remission in a small cohort of anti‐IL‐6‐refractory iMCD patients with thrombocytopenia, anasarca, fever, renal dysfunction and organomegaly (iMCD‐TAFRO). However, sirolimus has not shown uniform effect, potentially due to its limited mTORC2 inhibition. To investigate mTORC2 activation in iMCD, we quantified the mTORC2 effector protein pNDRG1 by immunohistochemistry of lymph node tissue from six iMCD‐TAFRO and eight iMCD patients who do not meet TAFRO criteria (iMCD‐not‐otherwise‐specified; iMCD‐NOS). mTORC2 activation was increased in all regions of iMCD‐TAFRO lymph nodes and the interfollicular space of iMCD‐NOS compared with control tissue. Immunohistochemistry also revealed increased pNDRG1 expression in iMCD‐TAFRO germinal centres compared with autoimmune lymphoproliferative syndrome (ALPS), an mTOR‐driven, sirolimus‐responsive lymphoproliferative disorder, and comparable staining between iMCD‐NOS and ALPS. These results suggest increased mTORC2 activity in iMCD and that dual mTORC1/mTORC2 inhibitors may be a rational therapeutic approach.  相似文献   
12.
Human hemoglobin (Hb) conjugated to benzene tetracarboxylate substituted dextran produces a polymeric Hb (Dex-BTC-Hb) with similar oxygen affinity to that of red blood cells (P(50)=28-29 mm Hg). Under physiological conditions, the oxygen affinity (P(50)) of Dex-BTC-Hb is 26 mm Hg, while that of native purified human HbA(0) is 14 mm Hg, but it exhibits a slight reduction in cooperativity (n(50)), Bohr effect, and lacks sensitivity to inositol hexaphosphate (IHP), when compared to HbA(0). Oxygen-binding kinetics, measured by rapid mixing stopped-flow method showed comparable oxygen dissociation and association rates for both HbA(0) and Dex-BTC-Hb. The rate constant for NO-mediated oxidation of the oxy form of Dex-BTC-Hb, which is governed by NO entry to the heme pocket, was reduced to half of the value obtained for HbA(0). Moreover, Dex-BTC-Hb is only slightly more sensitive to oxidative reactions than HbA(0), as shown by about 2-fold increase in autoxidation, and slightly higher H(2)O(2) reaction and heme degradation rates. Dextran-BTC-based modification of Hb produced an oxygen-carrying compound with increased oxygen release rates, decreased oxygen affinity and reduced nitric oxide scavenging, desirable properties for a viable blood substitute. However, the reduction in the allosteric function of this protein and the lack of apparent quaternary T-->R transition may hinder its physiological role as an oxygen transporter.  相似文献   
13.
Anion channels and transporters in plant cell membranes   总被引:2,自引:0,他引:2  
  相似文献   
14.
BACKGROUND: Polyethylenimines (PEIs) with high molecular weights are effective nonviral gene delivery vectors. However, the in vivo use of these PEIs can be hampered by their cellular toxicity. In the present study we developed and tested a new PEI polymer synthesized by linking less toxic, low molecular weight (MW) PEIs with a commonly used, biocompatible drug carrier, beta-cyclodextrin (CyD). METHODS AND RESULTS: The terminal CyD hydroxyl groups were activated by 1,1'-carbonyldiimidazole. Each activated CyD then linked two branched PEI molecules with MW of 600 Da to form a CyD-containing polymer with MW of 61 kDa, in which CyD served as a part of the backbone. The PEI-CyD polymer developed was soluble in water and biodegradable. In cell viability assays with sensitive neurons, the polymer performed similarly to low-MW PEIs and displayed much lower cellular cytotoxicity compared to PEI 25 kDa. The gene delivery efficiency of the polymer was comparable to, and at higher polymer/DNA ratios even higher than, that offered by PEI 25 kDa in neural cells. Attractively, intrathecal injection of plasmid DNA complexed by the polymer into the rat spinal cord provided levels of gene expression close to that offered by PEI 25 kDa. CONCLUSIONS: The polymer reported in the current study displayed improved biocompatibility over non-degradable PEI 25 kDa and mediated gene transfection in cultured neurons and in the central nervous system effectively. The new polymer would be worth exploring further as an in vivo delivery system of therapeutic genetic materials for gene therapy of neurological disorders.  相似文献   
15.
16.
Different variants of hepatitis C virus core protein (HCcAg) have proved to self-assemble in vitro into virus-like particles (VLPs). However, difficulties in obtaining purified mature HCcAg have limited these studies. In this study, a high degree of monomeric HCcAg purification was accomplished using chromatographic procedures under denaturing conditions. Size exclusion chromatography and sucrose density gradient centrifugation of renatured HCcAg (in the absence of structured RNA) under reducing conditions suggested that it assembled into empty capsids. The electron microscopy analysis of renatured HCcAg showed the presence of spherical VLPs with irregular shapes and an average diameter of 35nm. Data indicated that HCcAg monomers assembled in vitro into VLPs in the absence of structured RNA, suggesting that recombinant HCcAg used in this work contains all the information necessary for the assembly process. However, they also suggest that some cellular factors might be required for the proper in vitro assembly of capsids.  相似文献   
17.
18.
Head and neck squamous cell cancer(HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure. In recent years, it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells(CSCs) that escape currently available therapies. CSCs form a small portion of the total tumor burden but may play a disproportionately important role in determining outcomes. CSCs have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In HNSCC, CSCs have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In the light of such observations, the present review summarizes biological characteristics of CSCs in HNSCC, outlines targeted strategies for the successful eradication of CSCs in HNSCC including targeting the self-renewal controlling pathways, blocking epithelial mesenchymal transition, niche targeting, immunotherapy approaches and highlights the need to better understand CSCs biology for new treatments modalities.  相似文献   
19.
20.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号