首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1449篇
  免费   125篇
  国内免费   1篇
  2023年   13篇
  2022年   29篇
  2021年   73篇
  2020年   35篇
  2019年   43篇
  2018年   61篇
  2017年   26篇
  2016年   64篇
  2015年   87篇
  2014年   115篇
  2013年   106篇
  2012年   118篇
  2011年   124篇
  2010年   81篇
  2009年   71篇
  2008年   79篇
  2007年   75篇
  2006年   73篇
  2005年   55篇
  2004年   51篇
  2003年   57篇
  2002年   42篇
  2001年   8篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   9篇
  1992年   2篇
  1988年   3篇
  1983年   2篇
  1982年   4篇
  1979年   2篇
  1976年   2篇
  1972年   2篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
  1962年   1篇
  1961年   1篇
  1946年   1篇
  1943年   2篇
  1926年   1篇
  1924年   1篇
  1923年   1篇
  1909年   1篇
  1902年   2篇
  1862年   1篇
排序方式: 共有1575条查询结果,搜索用时 15 毫秒
991.
992.
Antonie van Leeuwenhoek - Several members of the Mycobacterium genus cause invasive infections in humans and animals. According to a recent phylogenetic analysis, some strains of Mycobacterium...  相似文献   
993.
Gap junction (GJ) mediates intercellular communication through linked hemichannels from each of two adjacent cells. Using human and mouse models, we show that connexin 43 (Cx43), the main GJ protein in the immune system, was recruited to the immunological synapse during T cell priming as both GJs and stand-alone hemichannels. Cx43 accumulation at the synapse was Ag specific and time dependent, and required an intact actin cytoskeleton. Fluorescence recovery after photobleaching and Cx43-specific inhibitors were used to prove that intercellular communication between T cells and dendritic cells is bidirectional and specifically mediated by Cx43. Moreover, this intercellular cross talk contributed to T cell activation as silencing of Cx43 with an antisense or inhibition of GJ docking impaired intracellular Ca(2+) responses and cytokine release by T cells. These findings identify Cx43 as an important functional component of the immunological synapse and reveal a crucial role for GJs and hemichannels as coordinators of the dendritic cell-T cell signaling machinery that regulates T cell activation.  相似文献   
994.
There are many protein ligands and/or drugs described with very different affinity to a large number of target proteins or receptors. In this work, we selected Ligands or Drug-target pairs (DTPs/nDTPs) of drugs with high affinity/non-affinity for different targets. Quantitative Structure-Activity Relationships (QSAR) models become a very useful tool in this context to substantially reduce time and resources consuming experiments. Unfortunately most QSAR models predict activity against only one protein target and/or have not been implemented in the form of public web server freely accessible online to the scientific community. To solve this problem, we developed here a multi-target QSAR (mt-QSAR) classifier using the MARCH-INSIDE technique to calculate structural parameters of drug and target plus one Artificial Neuronal Network (ANN) to seek the model. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 20:20-15-1:1. This MLP classifies correctly 611 out of 678 DTPs (sensitivity=90.12%) and 3083 out of 3408 nDTPs (specificity=90.46%), corresponding to training accuracy=90.41%. The validation of the model was carried out by means of external predicting series. The model classifies correctly 310 out of 338 DTPs (sensitivity=91.72%) and 1527 out of 1674 nDTP (specificity=91.22%) in validation series, corresponding to total accuracy=91.30% for validation series (predictability). This model favorably compares with other ANN models developed in this work and Machine Learning classifiers published before to address the same problem in different aspects. We implemented the present model at web portal Bio-AIMS in the form of an online server called: Non-Linear MARCH-INSIDE Nested Drug-Bank Exploration & Screening Tool (NL MIND-BEST), which is located at URL: http://miaja.tic.udc.es/Bio-AIMS/NL-MIND-BEST.php. This online tool is based on PHP/HTML/Python and MARCH-INSIDE routines. Finally we illustrated two practical uses of this server with two different experiments. In experiment 1, we report by first time Quantum QSAR study, synthesis, characterization, and experimental assay of antiplasmodial and cytotoxic activities of oxoisoaporphine alkaloids derivatives as well as NL MIND-BEST prediction of potential target proteins. In experiment 2, we report sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF, and -TOF/TOF MS, MASCOT search, MM/MD 3D structure modeling, and NL MIND-BEST prediction for different peptides a new protein of the found in the proteome of the human parasite Giardia lamblia, which is promising for anti-parasite drug-targets discovery.  相似文献   
995.
Recent developments in (13) C NMR spectrometry have allowed the determination of intramolecular (13) C/(12) C ratios with high precision. However, the analysis of carbohydrates requires their derivatization to constrain the anomeric carbon. Fructose has proved to be particularly problematic because of a byproduct occurring during derivatization and the complexity of the NMR spectrum of the derivative. Here, we describe a method to determine the intramolecular (13) C/(12) C ratios in fructose by (13) C NMR analysis of the acetyl-isopropylidene derivative. We have applied this method to measure the intramolecular (13) C/(12) C distribution in the fructosyl moiety of sucrose and have compared this with that in the glucosyl moiety. Three prominent features stand out. First, in sucrose from both C(3) and C(4) plants, the C-1 and C-2 positions of the glucosyl and fructosyl moieties are markedly different. Second, these positions in C(3) and C(4) plants show a similar profile. Third, the glucosyl and fructosyl moieties of sucrose from Crassulacean acid metabolism (CAM) metabolism have a different profile. These contrasting values can be interpreted as a result of the isotopic selectivity of enzymes that break or make covalent bonds in glucose metabolism, whereas the distinctive (13) C pattern in CAM sucrose probably indicates a substantial contribution of gluconeogenesis to glucose synthesis.  相似文献   
996.
The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone.  相似文献   
997.
Metabolic syndrome (MetS) may have increased cortisol (F) production caused by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in liver and adipose tissue and/or by HPA axis dysregulation. F is then mainly metabolized by liver reductases into inactive tetrahydrometabolites (THMs). We measured THM levels in patients with or without MetS and evaluate the correlation between THMs and anthropometric and biochemical parameters. We recruited 221 subjects, of whom 130 had MetS by ATP III. We evaluated F, cortisone (E), adipokines, glucose, insulin and lipid profiles as well as urinary (24 h) F, E and THM levels. β Cell function was estimated by the HOMA Calculator. We observed that patients with MetS showed higher levels of THMs, HOMA-IR and leptin and lower levels of adiponectin and HOMA-β but no differences in F and E in plasma or urine. THM was associated with weight (r = +0.44, p < 0.001), waist circumference (r = +0.38, p < 0.01), glycemia (r = +0.37, p < 0.01), and triglycerides (r = +0.18, p = 0.06) and negatively correlated with adiponectin (r = −0.36, p < 0.001), HOMA-β (r = −0.21, p < 0.001) and HDL (r = −0.29, p < 0.01). In a logistic regression model, THM levels were associated with hypertension, hyperglycemia and dyslipidemia. We conclude that MetS is associated with increased urinary THMs but not with F and E levels in plasma or urine. Increased levels of THM, reflecting the daily cortisol production subsequently metabolized, are correlated with hypoadiponectinemia, hypertension, dyslipidemia, insulin resistance and β cell dysfunction. A subtle increased in glucocorticoid production may further account for the phenotypic and biochemical similarities observed in central obesity and Cushing’s syndrome.  相似文献   
998.
There are no earlier reports with successful isolation of plasma membranes from lignin‐forming tissues of conifers. A method to isolate cellular membranes from extracellular lignin‐producing tissue‐cultured cells and developing xylem of Norway spruce was optimized. Modifications to the homogenization buffer were needed to obtain membranes from these phenolics‐rich tissues. Membranes were separated by aqueous polymer two‐phase partitioning. Chlorophyll a determination, marker enzyme assays and western blot analyses using antibodies for each membrane type showed that mitochondrial, chloroplastic and to a certain extent also ER and Golgi membranes were efficiently diminished from the upper phase, but tonoplast and plasma membranes distributed evenly between the upper and lower phases. Redox enzymes present in the partially purified membrane fractions were assayed in order to reveal the origin of H2O2 needed for lignification. The membranes of spruce contained enzymes able to generate superoxide in the presence of NAD(P)H. Besides members of the flavodoxin and flavodoxin‐like family proteins, cytochrome b5, cytochrome P450 and several stress responsive proteins were identified by nitroblue tetrazolium staining of isoelectric focusing gels and by mass spectrometry. Naphthoquinones juglone and menadione increased superoxide production in activity‐stained gels. Some juglone‐activated enzymes were preferentially using NADH. With NADH, menadione activated only some of the enzymes that juglone did, whereas with NADPH the activation patterns were identical. Duroquinone, a benzoquinone, did not affect superoxide production. Superoxide dismutase, ascorbate peroxidase, catalase and an acidic class III peroxidase isoenzyme were detected in partially purified spruce membranes. The possible locations and functions of these enzymes are discussed.  相似文献   
999.
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell.  相似文献   
1000.
Glycosylation plays a critical role in the biogenesis and function of membrane proteins. Transient receptor potential channel TRPP2 is a nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease. TRPP2 has been shown to be heavily N-glycosylated, but the glycosylation sites and the biological role of N-linked glycosylation have not been investigated. Here we show, using a combination of mass spectrometry and biochemical approaches, that native TRPP2 is glycosylated at five asparagines in the first extracellular loop. Glycosylation is required for the efficient biogenesis of TRPP2 because mutations of the glycosylated asparagines result in strongly decreased protein expression of the ion channel. Wild-type and N-glycosylation-deficient TRPP2 is degraded in lysosomes, as shown by increased TRPP2 protein levels upon chemical inhibition of lysosomal degradation. In addition, using pharmacological and genetic approaches, we demonstrate that glucosidase II (GII) mediates glycan trimming of TRPP2. The non-catalytic β subunit of glucosidase II (GIIβ) is encoded by PRKCSH, one of the genes causing autosomal dominant polycystic liver disease (ADPLD). The impaired GIIβ-dependent glucose trimming of TRPP2 glycosylation in ADPLD may explain the decreased TRPP2 protein expression in Prkcsh−/− mice and the genetic interaction observed between TRPP2 and PRKCSH in ADPLD. These results highlight the biological importance of N-linked glycosylation and GII-mediated glycan trimming in the control of biogenesis and stability of TRPP2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号